耳内脑电图对心理手势的分类

Nick Merrill, Max T. Curran, Jong-Kai Yang, J. Chuang
{"title":"耳内脑电图对心理手势的分类","authors":"Nick Merrill, Max T. Curran, Jong-Kai Yang, J. Chuang","doi":"10.1109/BSN.2016.7516246","DOIUrl":null,"url":null,"abstract":"While brain-computer interfaces (BCI) based on electroencephalography (EEG) have improved dramatically over the past five years, their inconvenient, head-worn form factor has challenged their wider adoption. In this paper, we investigate how EEG signals collected from the ear could be used for “gestural” control of a brain-computer interface (BCI). Specifically, we investigate the efficacy of a support vector classifier (SVC) in distinguishing between mental tasks, or gestures, recorded by a modified, consumer headset. We find that an SVC reaches acceptable BCI accuracy for nine of the subjects in our pool (n=12), and distinguishes at least one pair of gestures better than chance for all subjects. User surveys highlight the need for longer-term research on user attitudes toward in-ear EEG devices, for discreet, non-invasive BCIs.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classifying mental gestures with in-ear EEG\",\"authors\":\"Nick Merrill, Max T. Curran, Jong-Kai Yang, J. Chuang\",\"doi\":\"10.1109/BSN.2016.7516246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While brain-computer interfaces (BCI) based on electroencephalography (EEG) have improved dramatically over the past five years, their inconvenient, head-worn form factor has challenged their wider adoption. In this paper, we investigate how EEG signals collected from the ear could be used for “gestural” control of a brain-computer interface (BCI). Specifically, we investigate the efficacy of a support vector classifier (SVC) in distinguishing between mental tasks, or gestures, recorded by a modified, consumer headset. We find that an SVC reaches acceptable BCI accuracy for nine of the subjects in our pool (n=12), and distinguishes at least one pair of gestures better than chance for all subjects. User surveys highlight the need for longer-term research on user attitudes toward in-ear EEG devices, for discreet, non-invasive BCIs.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

虽然基于脑电图(EEG)的脑机接口(BCI)在过去五年中有了巨大的进步,但它们不方便、头戴式的外形因素阻碍了它们的广泛采用。在本文中,我们研究了从耳朵收集的脑电图信号如何用于脑机接口(BCI)的“手势”控制。具体来说,我们研究了支持向量分类器(SVC)在区分由改进的消费者头戴式耳机记录的心理任务或手势方面的功效。我们发现,对于我们的池中9个受试者(n=12), SVC达到了可接受的BCI精度,并且对所有受试者来说,至少有一对手势的区分优于随机。用户调查强调需要长期研究用户对耳内脑电图设备的态度,用于谨慎的非侵入性脑机接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying mental gestures with in-ear EEG
While brain-computer interfaces (BCI) based on electroencephalography (EEG) have improved dramatically over the past five years, their inconvenient, head-worn form factor has challenged their wider adoption. In this paper, we investigate how EEG signals collected from the ear could be used for “gestural” control of a brain-computer interface (BCI). Specifically, we investigate the efficacy of a support vector classifier (SVC) in distinguishing between mental tasks, or gestures, recorded by a modified, consumer headset. We find that an SVC reaches acceptable BCI accuracy for nine of the subjects in our pool (n=12), and distinguishes at least one pair of gestures better than chance for all subjects. User surveys highlight the need for longer-term research on user attitudes toward in-ear EEG devices, for discreet, non-invasive BCIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edemeter: Wearable and continuous fluid retention monitoring Probabilistic sensor network design Tracking body core temperature in military thermal environments: An extended Kalman filter approach A multimodal sensor system for automated marmoset behavioral analysis Accurate personal ultraviolet dose estimation with multiple wearable sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1