计算或不计算:大空间数据分析的计算挑战

E. Tanin, Hairuo Xie
{"title":"计算或不计算:大空间数据分析的计算挑战","authors":"E. Tanin, Hairuo Xie","doi":"10.1145/2809948.2809954","DOIUrl":null,"url":null,"abstract":"Counts of objects are important for big data analytics. However, spatial objects do not work well with counts. We present the latest developments on distinct counting problem. In particular, we explain Euler Histograms, which are a category of spatial data structures that address the distinct counting challenges. Euler histograms support traditional counting queries as well as other query types.","PeriodicalId":142249,"journal":{"name":"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Count or Not to Count: Counting Challenges for Big Spatial Data Analytics\",\"authors\":\"E. Tanin, Hairuo Xie\",\"doi\":\"10.1145/2809948.2809954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counts of objects are important for big data analytics. However, spatial objects do not work well with counts. We present the latest developments on distinct counting problem. In particular, we explain Euler Histograms, which are a category of spatial data structures that address the distinct counting challenges. Euler histograms support traditional counting queries as well as other query types.\",\"PeriodicalId\":142249,\"journal\":{\"name\":\"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2809948.2809954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2809948.2809954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对象计数对于大数据分析非常重要。然而,空间对象不能很好地处理计数。本文介绍了不同计数问题的最新进展。特别是,我们解释欧拉直方图,这是一类空间数据结构,解决了不同的计数挑战。欧拉直方图支持传统的计数查询以及其他查询类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Count or Not to Count: Counting Challenges for Big Spatial Data Analytics
Counts of objects are important for big data analytics. However, spatial objects do not work well with counts. We present the latest developments on distinct counting problem. In particular, we explain Euler Histograms, which are a category of spatial data structures that address the distinct counting challenges. Euler histograms support traditional counting queries as well as other query types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Algorithm for Relationship Queries on Large Graphs Session details: Morning Session Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval Large-scale Efficient and Effective Video Similarity Search Improving Dynamic Index Pruning via Linear Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1