基于rgb估计的精确三维手部数据标记去除网络及其在钢琴中的应用

Erwin Wu, Hayato Nishioka, Shinichi Furuya, H. Koike
{"title":"基于rgb估计的精确三维手部数据标记去除网络及其在钢琴中的应用","authors":"Erwin Wu, Hayato Nishioka, Shinichi Furuya, H. Koike","doi":"10.1109/WACV56688.2023.00299","DOIUrl":null,"url":null,"abstract":"Hand pose analysis is a key step to understanding dexterous hand performances of many high-level skills, such as playing the piano. Currently, most accurate hand tracking systems are using fabric-/marker-based sensing that potentially disturbs users’ performance. On the other hand, markerless computer vision-based methods rely on a precise bare-hand dataset for training, which is difficult to obtain. In this paper, we collect a large-scale high precision 3D hand pose dataset with a small workload using a marker-removal network (MR-Net). The proposed MR-Net translates the marked-hand images to realistic bare-hand images, and the corresponding 3D postures are captured by a motion capture thus few manual annotations are required. A baseline estimation network PiaNet is introduced and we report the accuracy of various metrics together with a blind qualitative test to show the practical effect.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marker-removal Networks to Collect Precise 3D Hand Data for RGB-based Estimation and its Application in Piano\",\"authors\":\"Erwin Wu, Hayato Nishioka, Shinichi Furuya, H. Koike\",\"doi\":\"10.1109/WACV56688.2023.00299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand pose analysis is a key step to understanding dexterous hand performances of many high-level skills, such as playing the piano. Currently, most accurate hand tracking systems are using fabric-/marker-based sensing that potentially disturbs users’ performance. On the other hand, markerless computer vision-based methods rely on a precise bare-hand dataset for training, which is difficult to obtain. In this paper, we collect a large-scale high precision 3D hand pose dataset with a small workload using a marker-removal network (MR-Net). The proposed MR-Net translates the marked-hand images to realistic bare-hand images, and the corresponding 3D postures are captured by a motion capture thus few manual annotations are required. A baseline estimation network PiaNet is introduced and we report the accuracy of various metrics together with a blind qualitative test to show the practical effect.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手姿分析是理解许多高级技能(如钢琴演奏)灵巧手的关键步骤。目前,大多数精确的手部跟踪系统都使用基于织物/标记的传感,这可能会干扰用户的表现。另一方面,基于计算机视觉的无标记方法依赖于精确的徒手数据集进行训练,这很难获得。在本文中,我们使用标记去除网络(MR-Net)以较小的工作量收集了大规模高精度3D手姿数据集。提出的MR-Net将标记手图像转换为逼真的徒手图像,并通过动作捕捉捕捉相应的3D姿势,因此很少需要手动注释。介绍了一种基线估计网络planet,报告了各种指标的准确性,并进行了盲定性测试,以显示实际效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Marker-removal Networks to Collect Precise 3D Hand Data for RGB-based Estimation and its Application in Piano
Hand pose analysis is a key step to understanding dexterous hand performances of many high-level skills, such as playing the piano. Currently, most accurate hand tracking systems are using fabric-/marker-based sensing that potentially disturbs users’ performance. On the other hand, markerless computer vision-based methods rely on a precise bare-hand dataset for training, which is difficult to obtain. In this paper, we collect a large-scale high precision 3D hand pose dataset with a small workload using a marker-removal network (MR-Net). The proposed MR-Net translates the marked-hand images to realistic bare-hand images, and the corresponding 3D postures are captured by a motion capture thus few manual annotations are required. A baseline estimation network PiaNet is introduced and we report the accuracy of various metrics together with a blind qualitative test to show the practical effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aggregating Bilateral Attention for Few-Shot Instance Localization Burst Reflection Removal using Reflection Motion Aggregation Cues Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies Few-shot Object Detection via Improved Classification Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1