探讨精准养牛中物联网数据质量和模型鲁棒性的相互依赖性

F. Papst, K. Schodl, O. Saukh
{"title":"探讨精准养牛中物联网数据质量和模型鲁棒性的相互依赖性","authors":"F. Papst, K. Schodl, O. Saukh","doi":"10.1145/3485730.3493447","DOIUrl":null,"url":null,"abstract":"Low-cost sensors are extensively used in numerous Internet of Things (IoT) applications to measure relevant physical processes. Today, processing context data is increasingly done by proprietary algorithms tuned to a specific use-case, e.g., a sensor measuring activity intensity of a cow. Readings from these sensors may be subject to data distribution shifts, which challenge robustness of models using these sensor readings. In this paper, we propose a new sensor data processing framework, which leverages a co-dependency between data quality and model robustness to detect performance issues of data-driven predictive models in the field. We show how distribution shifts in the input data impact the quality of the model, which relies on application-specific sensors, and present indicators capable of detecting such shifts in the wild. The proposed framework used in the context of precision cattle farming allows improving the quality of cow lameness predictive models on the field data by up to 62%.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring Co-dependency of IoT Data Quality and Model Robustness in Precision Cattle Farming\",\"authors\":\"F. Papst, K. Schodl, O. Saukh\",\"doi\":\"10.1145/3485730.3493447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-cost sensors are extensively used in numerous Internet of Things (IoT) applications to measure relevant physical processes. Today, processing context data is increasingly done by proprietary algorithms tuned to a specific use-case, e.g., a sensor measuring activity intensity of a cow. Readings from these sensors may be subject to data distribution shifts, which challenge robustness of models using these sensor readings. In this paper, we propose a new sensor data processing framework, which leverages a co-dependency between data quality and model robustness to detect performance issues of data-driven predictive models in the field. We show how distribution shifts in the input data impact the quality of the model, which relies on application-specific sensors, and present indicators capable of detecting such shifts in the wild. The proposed framework used in the context of precision cattle farming allows improving the quality of cow lameness predictive models on the field data by up to 62%.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3493447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3493447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

低成本传感器广泛应用于众多物联网(IoT)应用中,用于测量相关的物理过程。如今,上下文数据的处理越来越多地通过针对特定用例的专有算法来完成,例如,测量奶牛活动强度的传感器。这些传感器的读数可能会受到数据分布变化的影响,这对使用这些传感器读数的模型的鲁棒性提出了挑战。在本文中,我们提出了一个新的传感器数据处理框架,它利用数据质量和模型鲁棒性之间的相互依赖性来检测该领域数据驱动的预测模型的性能问题。我们展示了输入数据中的分布变化如何影响模型的质量,模型依赖于特定于应用程序的传感器,并提供了能够在野外检测这种变化的指标。在精确养牛的背景下使用的拟议框架允许在现场数据上提高牛跛行预测模型的质量高达62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Co-dependency of IoT Data Quality and Model Robustness in Precision Cattle Farming
Low-cost sensors are extensively used in numerous Internet of Things (IoT) applications to measure relevant physical processes. Today, processing context data is increasingly done by proprietary algorithms tuned to a specific use-case, e.g., a sensor measuring activity intensity of a cow. Readings from these sensors may be subject to data distribution shifts, which challenge robustness of models using these sensor readings. In this paper, we propose a new sensor data processing framework, which leverages a co-dependency between data quality and model robustness to detect performance issues of data-driven predictive models in the field. We show how distribution shifts in the input data impact the quality of the model, which relies on application-specific sensors, and present indicators capable of detecting such shifts in the wild. The proposed framework used in the context of precision cattle farming allows improving the quality of cow lameness predictive models on the field data by up to 62%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1