基于支持向量机和卷积神经网络的fMRI数据分类

R. Zafar, A. Malik, Aliyu Nuhu Shuaibu, M. J. U. Rehman, S. Dass
{"title":"基于支持向量机和卷积神经网络的fMRI数据分类","authors":"R. Zafar, A. Malik, Aliyu Nuhu Shuaibu, M. J. U. Rehman, S. Dass","doi":"10.1109/ICSIPA.2017.8120630","DOIUrl":null,"url":null,"abstract":"In recent years convolutional neural network have obtained more popularity because of its progressive performance for different applications especially for object recognition. In neuroimaging, data varies from person to person and condition to condition so it is always a challenging job to model the brain data. Any analysis in neuroimaging is also dependent on the quality of data and currently, functional magnetic resonance imaging is considered as the best among all techniques. It is most reliable and popular modality to measure the brain activity patterns. In fMRI, region of interest is a common method of analysis in which data is taken from a specific brain region based on the structural or functional information. In this study, convolutional neural network is applied to the significant voxels obtained through the t-contrast of the design matrix during the ROI analysis. Data is taken against two conditions and 1000 significant voxels with highest absolute values are taken for each condition for further analysis. During the proposed method, analysis is performed using convolutional neural network along with ROI analysis. Support vector machine is used in the classification of both methods; ROI and proposed methods. In conclusion, it is shown that the features extracted through convolutional neural network can provide better significant results compared to the other one.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"106 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of fMRI data using support vector machine and convolutional neural network\",\"authors\":\"R. Zafar, A. Malik, Aliyu Nuhu Shuaibu, M. J. U. Rehman, S. Dass\",\"doi\":\"10.1109/ICSIPA.2017.8120630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years convolutional neural network have obtained more popularity because of its progressive performance for different applications especially for object recognition. In neuroimaging, data varies from person to person and condition to condition so it is always a challenging job to model the brain data. Any analysis in neuroimaging is also dependent on the quality of data and currently, functional magnetic resonance imaging is considered as the best among all techniques. It is most reliable and popular modality to measure the brain activity patterns. In fMRI, region of interest is a common method of analysis in which data is taken from a specific brain region based on the structural or functional information. In this study, convolutional neural network is applied to the significant voxels obtained through the t-contrast of the design matrix during the ROI analysis. Data is taken against two conditions and 1000 significant voxels with highest absolute values are taken for each condition for further analysis. During the proposed method, analysis is performed using convolutional neural network along with ROI analysis. Support vector machine is used in the classification of both methods; ROI and proposed methods. In conclusion, it is shown that the features extracted through convolutional neural network can provide better significant results compared to the other one.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"106 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,卷积神经网络以其渐进式的性能得到了越来越多的应用,特别是在物体识别方面。在神经影像学中,数据因人而异,情况不同,因此对大脑数据进行建模一直是一项具有挑战性的工作。神经成像的任何分析也依赖于数据的质量,目前,功能磁共振成像被认为是所有技术中最好的。这是测量大脑活动模式最可靠、最流行的方法。在功能磁共振成像中,感兴趣区域是一种常用的分析方法,它根据结构或功能信息从特定的大脑区域获取数据。在本研究中,将卷积神经网络应用于ROI分析中通过设计矩阵的t-对比度获得的重要体素。在两种情况下获取数据,并为每种情况获取绝对值最高的1000个重要体素,以便进一步分析。在该方法中,使用卷积神经网络和ROI分析进行分析。支持向量机用于两种方法的分类;ROI和建议的方法。综上所述,与其他方法相比,卷积神经网络提取的特征可以提供更好的显著结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of fMRI data using support vector machine and convolutional neural network
In recent years convolutional neural network have obtained more popularity because of its progressive performance for different applications especially for object recognition. In neuroimaging, data varies from person to person and condition to condition so it is always a challenging job to model the brain data. Any analysis in neuroimaging is also dependent on the quality of data and currently, functional magnetic resonance imaging is considered as the best among all techniques. It is most reliable and popular modality to measure the brain activity patterns. In fMRI, region of interest is a common method of analysis in which data is taken from a specific brain region based on the structural or functional information. In this study, convolutional neural network is applied to the significant voxels obtained through the t-contrast of the design matrix during the ROI analysis. Data is taken against two conditions and 1000 significant voxels with highest absolute values are taken for each condition for further analysis. During the proposed method, analysis is performed using convolutional neural network along with ROI analysis. Support vector machine is used in the classification of both methods; ROI and proposed methods. In conclusion, it is shown that the features extracted through convolutional neural network can provide better significant results compared to the other one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1