在不确定时空基线趋势的情况下估计纵向数据的变化系数

T. Tonda, K. Satoh
{"title":"在不确定时空基线趋势的情况下估计纵向数据的变化系数","authors":"T. Tonda, K. Satoh","doi":"10.14490/JJSS.47.1","DOIUrl":null,"url":null,"abstract":"In this paper we develop a method for estimating varying coefficients on effects of covariates without modeling the shape of the spatial-temporal baseline trend. We consider the situation where primary interest is in the effects of covariates and the spatial-temporal baseline trend, though non-negligible, is of secondary interest. This is similar to the situation with the Cox proportional hazards model in survival analysis. Basis functions are used to model the shapes of the varying coefficients, but no particular shape is assumed for the spatial-temporal baseline trend. After the effects of covariates are evaluated, estimates of the spatial-temporal baseline trend can be obtained nonparametrically.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Varying Coefficients for Longitudinal Data without Specifying Spatial-Temporal Baseline Trend\",\"authors\":\"T. Tonda, K. Satoh\",\"doi\":\"10.14490/JJSS.47.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop a method for estimating varying coefficients on effects of covariates without modeling the shape of the spatial-temporal baseline trend. We consider the situation where primary interest is in the effects of covariates and the spatial-temporal baseline trend, though non-negligible, is of secondary interest. This is similar to the situation with the Cox proportional hazards model in survival analysis. Basis functions are used to model the shapes of the varying coefficients, but no particular shape is assumed for the spatial-temporal baseline trend. After the effects of covariates are evaluated, estimates of the spatial-temporal baseline trend can be obtained nonparametrically.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.47.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.47.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一种方法来估计变化系数对协变量的影响,而不模拟时空基线趋势的形状。我们考虑的情况是,主要的兴趣是协变量的影响和时空基线趋势,虽然不可忽略,是次要的兴趣。这与生存分析中Cox比例风险模型的情况类似。基函数用于模拟变化系数的形状,但没有为时空基线趋势假设特定的形状。在评估协变量的影响后,可以获得非参数的时空基线趋势估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Varying Coefficients for Longitudinal Data without Specifying Spatial-Temporal Baseline Trend
In this paper we develop a method for estimating varying coefficients on effects of covariates without modeling the shape of the spatial-temporal baseline trend. We consider the situation where primary interest is in the effects of covariates and the spatial-temporal baseline trend, though non-negligible, is of secondary interest. This is similar to the situation with the Cox proportional hazards model in survival analysis. Basis functions are used to model the shapes of the varying coefficients, but no particular shape is assumed for the spatial-temporal baseline trend. After the effects of covariates are evaluated, estimates of the spatial-temporal baseline trend can be obtained nonparametrically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1