{"title":"生物信号处理中对电阻失配和偏置电压不敏感的新型仪器放大器结构","authors":"Zainul Abidin, K. Tanno, Shota Mago, H. Tamura","doi":"10.1109/ISMVL.2016.46","DOIUrl":null,"url":null,"abstract":"In this paper, novel Instrumentation Amplifier (IA) architectures for biological signal processing are proposed. The proposed IA architectures consist of Fully Balanced Differential Difference Amplifier (FBDDA) and Differential Difference Amplifier (DDA). These were evaluated by using HSPICE simulation with 1P 2M 0.6-μm CMOS process. From the simulation results, we could confirm that average CMRR of the second proposed IA architecture was much higher than that of conventional one andwas 169.5 dB. Furthermore, the offset voltage could be reducedby using chopper stabilization technique.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Novel Instrumentation Amplifier Architectures Insensitive to Resistor Mismatches and Offset Voltage for Biological Signal Processing\",\"authors\":\"Zainul Abidin, K. Tanno, Shota Mago, H. Tamura\",\"doi\":\"10.1109/ISMVL.2016.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, novel Instrumentation Amplifier (IA) architectures for biological signal processing are proposed. The proposed IA architectures consist of Fully Balanced Differential Difference Amplifier (FBDDA) and Differential Difference Amplifier (DDA). These were evaluated by using HSPICE simulation with 1P 2M 0.6-μm CMOS process. From the simulation results, we could confirm that average CMRR of the second proposed IA architecture was much higher than that of conventional one andwas 169.5 dB. Furthermore, the offset voltage could be reducedby using chopper stabilization technique.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Instrumentation Amplifier Architectures Insensitive to Resistor Mismatches and Offset Voltage for Biological Signal Processing
In this paper, novel Instrumentation Amplifier (IA) architectures for biological signal processing are proposed. The proposed IA architectures consist of Fully Balanced Differential Difference Amplifier (FBDDA) and Differential Difference Amplifier (DDA). These were evaluated by using HSPICE simulation with 1P 2M 0.6-μm CMOS process. From the simulation results, we could confirm that average CMRR of the second proposed IA architecture was much higher than that of conventional one andwas 169.5 dB. Furthermore, the offset voltage could be reducedby using chopper stabilization technique.