基于机器学习的Serayu流域上游土地覆盖变化检测

Z. D. O. Permata, D. B. Sencaki, Afifuddin, M. Frederik, H. Priyadi, M. N. Putri, S. Arfah, Agustan, F. Alhasanah, L. Sumargana, R. Arifandri, N. Anatoly
{"title":"基于机器学习的Serayu流域上游土地覆盖变化检测","authors":"Z. D. O. Permata, D. B. Sencaki, Afifuddin, M. Frederik, H. Priyadi, M. N. Putri, S. Arfah, Agustan, F. Alhasanah, L. Sumargana, R. Arifandri, N. Anatoly","doi":"10.1109/ISMODE56940.2022.10180994","DOIUrl":null,"url":null,"abstract":"Water resources are important to be managed in a sustainable manner. Changes to the land cover such as from forest to agriculture will affect the water quality and quantity of the whole watershed system. The Serayu watershed in Central Java is considered one of the critical watersheds in Indonesia due to the high erosion and sedimentation rate from the conversion of forested land to horticulture land. This paper presents a study of land cover change using the Sentine1-2 satellite images from 2018- 2019 to 2020-2021 using the machine learning method. The Sentine1-2 images have a temporal resolution of 10 days which is necessary because of the high cloud cover in the study area. Image classification using the Light Gradient Boosting yields an overall accuracy from the training and testing dataset of 1.0 and 0.929 for images 2018 – 2019 and 1.0 and 0.915 for images 2020 – 2021. Field verification upstream of the Serayu watershed shows a good agreement with the classification results, where discrepancies are mainly due to land clearing of the agriculture plots.","PeriodicalId":335247,"journal":{"name":"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Land Cover Change Detection around Upstream of Serayu Watershed using Machine Learning\",\"authors\":\"Z. D. O. Permata, D. B. Sencaki, Afifuddin, M. Frederik, H. Priyadi, M. N. Putri, S. Arfah, Agustan, F. Alhasanah, L. Sumargana, R. Arifandri, N. Anatoly\",\"doi\":\"10.1109/ISMODE56940.2022.10180994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water resources are important to be managed in a sustainable manner. Changes to the land cover such as from forest to agriculture will affect the water quality and quantity of the whole watershed system. The Serayu watershed in Central Java is considered one of the critical watersheds in Indonesia due to the high erosion and sedimentation rate from the conversion of forested land to horticulture land. This paper presents a study of land cover change using the Sentine1-2 satellite images from 2018- 2019 to 2020-2021 using the machine learning method. The Sentine1-2 images have a temporal resolution of 10 days which is necessary because of the high cloud cover in the study area. Image classification using the Light Gradient Boosting yields an overall accuracy from the training and testing dataset of 1.0 and 0.929 for images 2018 – 2019 and 1.0 and 0.915 for images 2020 – 2021. Field verification upstream of the Serayu watershed shows a good agreement with the classification results, where discrepancies are mainly due to land clearing of the agriculture plots.\",\"PeriodicalId\":335247,\"journal\":{\"name\":\"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMODE56940.2022.10180994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMODE56940.2022.10180994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水资源必须以可持续的方式加以管理。土地覆盖的变化,如从森林到农业,将影响整个流域系统的水质和水量。中爪哇的Serayu流域被认为是印度尼西亚的关键流域之一,因为林地转化为园林地的侵蚀和沉积率很高。本文采用机器学习方法,利用2018- 2019年至2020-2021年sentinel - 1卫星图像对土地覆盖变化进行了研究。sentinel -2图像的时间分辨率为10天,这是研究区域高云量所必需的。使用光梯度增强的图像分类从2018 - 2019图像的训练和测试数据集中获得的总体精度为1.0和0.929,对于2020 - 2021图像为1.0和0.915。Serayu流域上游的实地验证结果与分类结果吻合较好,差异主要是由于农业地块的土地清理所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Land Cover Change Detection around Upstream of Serayu Watershed using Machine Learning
Water resources are important to be managed in a sustainable manner. Changes to the land cover such as from forest to agriculture will affect the water quality and quantity of the whole watershed system. The Serayu watershed in Central Java is considered one of the critical watersheds in Indonesia due to the high erosion and sedimentation rate from the conversion of forested land to horticulture land. This paper presents a study of land cover change using the Sentine1-2 satellite images from 2018- 2019 to 2020-2021 using the machine learning method. The Sentine1-2 images have a temporal resolution of 10 days which is necessary because of the high cloud cover in the study area. Image classification using the Light Gradient Boosting yields an overall accuracy from the training and testing dataset of 1.0 and 0.929 for images 2018 – 2019 and 1.0 and 0.915 for images 2020 – 2021. Field verification upstream of the Serayu watershed shows a good agreement with the classification results, where discrepancies are mainly due to land clearing of the agriculture plots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov Switching Process Monitoring Brain Wave Movement in Autism Children Analog Digit Electricity Meter Recognition Using Faster R-CNN Analysis of Weather Data for Rainfall Prediction using C5.0 Decision Tree Algorithm Implementation of Real-Time Sound Source Localization using TMS320C6713 Board with Interaural Time Difference Method Classification of Ornamental Plants with Convolutional Neural Networks and MobileNetV2 Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1