提高不同多核系统地球物理模型性能的策略

M. Serpa, E. Cruz, M. Diener, Arthur M. Krause, Albert Farrés, C. Rosas, J. Panetta, Mauricio Hanzich, P. Navaux
{"title":"提高不同多核系统地球物理模型性能的策略","authors":"M. Serpa, E. Cruz, M. Diener, Arthur M. Krause, Albert Farrés, C. Rosas, J. Panetta, Mauricio Hanzich, P. Navaux","doi":"10.1109/SBAC-PADW.2017.17","DOIUrl":null,"url":null,"abstract":"Many software mechanisms for geophysics exploration in Oil & Gas industries are based on wave propagation simulation. To perform such simulations, state-of-art HPC architectures are employed, generating results faster and with more accuracy at each generation. The software must evolve to support the new features of each design to keep performance scaling. Furthermore, it is important to understand the impact of each change applied to the software, in order to improve the performance as most as possible. In this paper, we propose several optimization strategies for a wave propagation model for five architectures: Intel Haswell, Intel Knights Corner, Intel Knights Landing, NVIDIA Kepler and NVIDIA Maxwell. We focus on improving the cache memory usage, vectorization, and locality in the memory hierarchy. We analyze the hardware impact of the optimizations, providing insights of how each strategy can improve the performance. The results show that NVIDIA Maxwell improves over Intel Haswell, Intel Knights Corner, Intel Knights Landing and NVIDIA Kepler performance by up to 17.9x.","PeriodicalId":325990,"journal":{"name":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Strategies to Improve the Performance of a Geophysics Model for Different Manycore Systems\",\"authors\":\"M. Serpa, E. Cruz, M. Diener, Arthur M. Krause, Albert Farrés, C. Rosas, J. Panetta, Mauricio Hanzich, P. Navaux\",\"doi\":\"10.1109/SBAC-PADW.2017.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many software mechanisms for geophysics exploration in Oil & Gas industries are based on wave propagation simulation. To perform such simulations, state-of-art HPC architectures are employed, generating results faster and with more accuracy at each generation. The software must evolve to support the new features of each design to keep performance scaling. Furthermore, it is important to understand the impact of each change applied to the software, in order to improve the performance as most as possible. In this paper, we propose several optimization strategies for a wave propagation model for five architectures: Intel Haswell, Intel Knights Corner, Intel Knights Landing, NVIDIA Kepler and NVIDIA Maxwell. We focus on improving the cache memory usage, vectorization, and locality in the memory hierarchy. We analyze the hardware impact of the optimizations, providing insights of how each strategy can improve the performance. The results show that NVIDIA Maxwell improves over Intel Haswell, Intel Knights Corner, Intel Knights Landing and NVIDIA Kepler performance by up to 17.9x.\",\"PeriodicalId\":325990,\"journal\":{\"name\":\"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PADW.2017.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

许多油气行业的地球物理勘探软件机制都是基于波传播模拟的。为了执行这样的模拟,采用了最先进的高性能计算架构,每一代生成的结果更快,更准确。软件必须不断发展以支持每种设计的新特性,以保持性能的可扩展性。此外,为了尽可能提高性能,理解应用于软件的每个更改的影响是很重要的。在本文中,我们针对五种架构(Intel Haswell、Intel Knights Corner、Intel Knights Landing、NVIDIA Kepler和NVIDIA Maxwell)的波传播模型提出了几种优化策略。我们专注于改进缓存内存的使用、向量化和内存层次结构中的局部性。我们分析了优化对硬件的影响,提供了每种策略如何提高性能的见解。结果表明,与Intel Haswell、Intel Knights Corner、Intel Knights Landing和NVIDIA Kepler相比,NVIDIA Maxwell的性能提高了17.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies to Improve the Performance of a Geophysics Model for Different Manycore Systems
Many software mechanisms for geophysics exploration in Oil & Gas industries are based on wave propagation simulation. To perform such simulations, state-of-art HPC architectures are employed, generating results faster and with more accuracy at each generation. The software must evolve to support the new features of each design to keep performance scaling. Furthermore, it is important to understand the impact of each change applied to the software, in order to improve the performance as most as possible. In this paper, we propose several optimization strategies for a wave propagation model for five architectures: Intel Haswell, Intel Knights Corner, Intel Knights Landing, NVIDIA Kepler and NVIDIA Maxwell. We focus on improving the cache memory usage, vectorization, and locality in the memory hierarchy. We analyze the hardware impact of the optimizations, providing insights of how each strategy can improve the performance. The results show that NVIDIA Maxwell improves over Intel Haswell, Intel Knights Corner, Intel Knights Landing and NVIDIA Kepler performance by up to 17.9x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient In-Situ Quantum Computing Simulation of Shor's and Grover's Algorithms Assessing Sparse Triangular Linear System Solvers on GPUs Energy Consumption Improvement of Shared-Cache Multicore Clusters Based on Explicit Simultaneous Multithreading A Parallel Algorithm for Minimum Spanning Tree on GPU Dataflow Programming for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1