基于遗传算法的支持向量机水下目标分类器选择与参数优化

B. Sherin, M. Supriya
{"title":"基于遗传算法的支持向量机水下目标分类器选择与参数优化","authors":"B. Sherin, M. Supriya","doi":"10.1109/SYMPOL.2015.7581164","DOIUrl":null,"url":null,"abstract":"Underwater target classification is a very demanding task owing to ever changing complicated nature of the underwater communication channels. Underwater target classification system identifies targets from a mixture of underwater events by its characteristic signature. The characteristic signatures pertaining to each target are patterned by feature recognition algorithms operating on hydrophone captured data. In this paper, an SVM target classifier is used to distinguish between targets of 4 acoustic classes. The performance of the classifier is improved by automating the selection of optimal algorithmic parameters. This paper attempts towards optimal selection of SVM parameters, kernel and kernel parameters using genetic algorithm.","PeriodicalId":127848,"journal":{"name":"2015 International Symposium on Ocean Electronics (SYMPOL)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GA based selection and parameter optimization for an SVM based underwater target classifier\",\"authors\":\"B. Sherin, M. Supriya\",\"doi\":\"10.1109/SYMPOL.2015.7581164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater target classification is a very demanding task owing to ever changing complicated nature of the underwater communication channels. Underwater target classification system identifies targets from a mixture of underwater events by its characteristic signature. The characteristic signatures pertaining to each target are patterned by feature recognition algorithms operating on hydrophone captured data. In this paper, an SVM target classifier is used to distinguish between targets of 4 acoustic classes. The performance of the classifier is improved by automating the selection of optimal algorithmic parameters. This paper attempts towards optimal selection of SVM parameters, kernel and kernel parameters using genetic algorithm.\",\"PeriodicalId\":127848,\"journal\":{\"name\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYMPOL.2015.7581164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Ocean Electronics (SYMPOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYMPOL.2015.7581164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于水下通信信道的复杂性不断变化,水下目标分类是一项要求很高的任务。水下目标分类系统是利用水下事件的特征特征来识别混合水下事件中的目标。与每个目标相关的特征签名通过对水听器捕获数据操作的特征识别算法进行图案化。本文采用支持向量机目标分类器对4类声学目标进行分类。通过自动选择最优算法参数,提高了分类器的性能。本文尝试用遗传算法对支持向量机参数、核和核参数进行优化选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GA based selection and parameter optimization for an SVM based underwater target classifier
Underwater target classification is a very demanding task owing to ever changing complicated nature of the underwater communication channels. Underwater target classification system identifies targets from a mixture of underwater events by its characteristic signature. The characteristic signatures pertaining to each target are patterned by feature recognition algorithms operating on hydrophone captured data. In this paper, an SVM target classifier is used to distinguish between targets of 4 acoustic classes. The performance of the classifier is improved by automating the selection of optimal algorithmic parameters. This paper attempts towards optimal selection of SVM parameters, kernel and kernel parameters using genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparse reconstruction based direction of arrival estimation of underwater targets Experimental observation of direction-of-arrival (DOA) estimation algorithms in a tank environment for sonar application Data-model validation of broadband normal mode reverberation model An l 2-norm regularized underwater target classifier with improved generalization capability Real time target recognition using Labview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1