结合MIC特征选择和基于特征的MSPCA进行网络流量异常检测

Zhaomin Chen, C. Yeo, Bu Sung Lee Francis, C. Lau
{"title":"结合MIC特征选择和基于特征的MSPCA进行网络流量异常检测","authors":"Zhaomin Chen, C. Yeo, Bu Sung Lee Francis, C. Lau","doi":"10.1109/DIPDMWC.2016.7529385","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a network anomaly detection system which consists of a Maximal Information Coefficient based feature selection algorithm and a feature-based MSPCA detection algorithm, which can separate the anomalous information more efficiently. Maximal Information Coefficient can provide a good information measurement of any dependency between two random variables. MSPCA combines the benefit of PCA and wavelet analysis to reduce the effect of normal subspace contamination, which is the main challenge of PCA-based anomaly detection algorithm. We utilize multiple network flow features to describe the network traffic instead of using only volumes. To evaluate our proposed system, we test it on the DARPA 1999 dataset. The results indicate a large improvement when using our method compared to PCA-based anomaly detection algorithms.","PeriodicalId":298218,"journal":{"name":"2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Combining MIC feature selection and feature-based MSPCA for network traffic anomaly detection\",\"authors\":\"Zhaomin Chen, C. Yeo, Bu Sung Lee Francis, C. Lau\",\"doi\":\"10.1109/DIPDMWC.2016.7529385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a network anomaly detection system which consists of a Maximal Information Coefficient based feature selection algorithm and a feature-based MSPCA detection algorithm, which can separate the anomalous information more efficiently. Maximal Information Coefficient can provide a good information measurement of any dependency between two random variables. MSPCA combines the benefit of PCA and wavelet analysis to reduce the effect of normal subspace contamination, which is the main challenge of PCA-based anomaly detection algorithm. We utilize multiple network flow features to describe the network traffic instead of using only volumes. To evaluate our proposed system, we test it on the DARPA 1999 dataset. The results indicate a large improvement when using our method compared to PCA-based anomaly detection algorithms.\",\"PeriodicalId\":298218,\"journal\":{\"name\":\"2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPDMWC.2016.7529385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPDMWC.2016.7529385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文提出了一种网络异常检测系统,该系统由基于最大信息系数的特征选择算法和基于特征的MSPCA检测算法组成,可以更有效地分离异常信息。最大信息系数可以很好地度量两个随机变量之间的依赖关系。MSPCA结合了PCA和小波分析的优点,减少了正态子空间污染的影响,这是基于PCA的异常检测算法面临的主要挑战。我们利用多个网络流特征来描述网络流量,而不是只使用卷。为了评估我们提出的系统,我们在DARPA 1999数据集上进行了测试。结果表明,与基于pca的异常检测算法相比,我们的方法有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining MIC feature selection and feature-based MSPCA for network traffic anomaly detection
In this paper, we propose a network anomaly detection system which consists of a Maximal Information Coefficient based feature selection algorithm and a feature-based MSPCA detection algorithm, which can separate the anomalous information more efficiently. Maximal Information Coefficient can provide a good information measurement of any dependency between two random variables. MSPCA combines the benefit of PCA and wavelet analysis to reduce the effect of normal subspace contamination, which is the main challenge of PCA-based anomaly detection algorithm. We utilize multiple network flow features to describe the network traffic instead of using only volumes. To evaluate our proposed system, we test it on the DARPA 1999 dataset. The results indicate a large improvement when using our method compared to PCA-based anomaly detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two layers of beam alignment for millimeter-wave communications The Information Technologists that were desired by enterprises in Thailand Improvement and discussion on pronunciation method of DIVA model based on auditory perception space A study of QoS feedback schemes on WiFi multicast for media streaming services Variable decomposition in total variant regularizer for denoising/deblurring image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1