基于进化蚁规则求解大型旅行商问题的新方法

Cheng-Fa Tsai, Chun-Wei Tsai
{"title":"基于进化蚁规则求解大型旅行商问题的新方法","authors":"Cheng-Fa Tsai, Chun-Wei Tsai","doi":"10.1109/IJCNN.2002.1007746","DOIUrl":null,"url":null,"abstract":"This paper presents a new metaheuristic method called EA algorithm for solving the TSP (traveling salesman problem). We introduce a genetic exploitation mechanism in ant colony system from genetic algorithm to search solutions space for solving the traveling salesman problem. In addition, we present a method called nearest neighbor (NN) to EA to improve TSPs thus obtain good solutions quickly. According to our simulation results, the EA algorithm outperforms the ant colony system (ACS) in tour length comparison of traveling salesman problem. In this work it is observed that EA or ACS with NN approach as initial solutions can provide a significant improvement for obtaining a global optimum solution or a near global optimum solution in large TSPs.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A new approach for solving large traveling salesman problem using evolutionary ant rules\",\"authors\":\"Cheng-Fa Tsai, Chun-Wei Tsai\",\"doi\":\"10.1109/IJCNN.2002.1007746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new metaheuristic method called EA algorithm for solving the TSP (traveling salesman problem). We introduce a genetic exploitation mechanism in ant colony system from genetic algorithm to search solutions space for solving the traveling salesman problem. In addition, we present a method called nearest neighbor (NN) to EA to improve TSPs thus obtain good solutions quickly. According to our simulation results, the EA algorithm outperforms the ant colony system (ACS) in tour length comparison of traveling salesman problem. In this work it is observed that EA or ACS with NN approach as initial solutions can provide a significant improvement for obtaining a global optimum solution or a near global optimum solution in large TSPs.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种求解旅行商问题的元启发式算法EA算法。从遗传算法中引入蚁群系统的遗传开发机制来搜索求解旅行商问题的解空间。此外,我们提出了一种称为最近邻(NN)的EA方法来改进tsp,从而快速得到好的解。仿真结果表明,EA算法在旅行商问题的行程比较中优于蚁群算法(ACS)。在这项工作中,观察到以神经网络方法作为初始解的EA或ACS可以为获得大型tsp的全局最优解或近全局最优解提供显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach for solving large traveling salesman problem using evolutionary ant rules
This paper presents a new metaheuristic method called EA algorithm for solving the TSP (traveling salesman problem). We introduce a genetic exploitation mechanism in ant colony system from genetic algorithm to search solutions space for solving the traveling salesman problem. In addition, we present a method called nearest neighbor (NN) to EA to improve TSPs thus obtain good solutions quickly. According to our simulation results, the EA algorithm outperforms the ant colony system (ACS) in tour length comparison of traveling salesman problem. In this work it is observed that EA or ACS with NN approach as initial solutions can provide a significant improvement for obtaining a global optimum solution or a near global optimum solution in large TSPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1