最长公共子串算法的GPU加速

Ádám Pintér, S. Szénási
{"title":"最长公共子串算法的GPU加速","authors":"Ádám Pintér, S. Szénási","doi":"10.1109/SACI58269.2023.10158638","DOIUrl":null,"url":null,"abstract":"The Longest Common Substring of two strings is a character sequence that appears in both texts and is the longest of these. The method is widely used in several text similarity measurement methods, usually used multiple times on the same textual data. There are several already known methods to solve the problem, but these are mostly based on very time and memory intensive procedures. This paper presents a novel data-parallel model to solve the same problem, available for GPU implementation. As our experimental results show, the data-parallel implementation is significantly faster for long textual data.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU Acceleration of Longest Common Substrings Algorithm\",\"authors\":\"Ádám Pintér, S. Szénási\",\"doi\":\"10.1109/SACI58269.2023.10158638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Longest Common Substring of two strings is a character sequence that appears in both texts and is the longest of these. The method is widely used in several text similarity measurement methods, usually used multiple times on the same textual data. There are several already known methods to solve the problem, but these are mostly based on very time and memory intensive procedures. This paper presents a novel data-parallel model to solve the same problem, available for GPU implementation. As our experimental results show, the data-parallel implementation is significantly faster for long textual data.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

两个字符串的最长公共子字符串是出现在两个文本中的字符序列,并且是其中最长的。该方法广泛应用于几种文本相似度度量方法中,通常在同一文本数据上多次使用。有几种已知的方法可以解决这个问题,但这些方法大多是基于非常耗费时间和内存的过程。本文提出了一种新的数据并行模型来解决相同的问题,可用于GPU实现。实验结果表明,对于长文本数据,数据并行实现的速度明显加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU Acceleration of Longest Common Substrings Algorithm
The Longest Common Substring of two strings is a character sequence that appears in both texts and is the longest of these. The method is widely used in several text similarity measurement methods, usually used multiple times on the same textual data. There are several already known methods to solve the problem, but these are mostly based on very time and memory intensive procedures. This paper presents a novel data-parallel model to solve the same problem, available for GPU implementation. As our experimental results show, the data-parallel implementation is significantly faster for long textual data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of 3D multi-user software tools in digital medicine – a scoping review Machine Learning in Heat Transfer: Taxonomy, Review and Evaluation Auction-Based Job Scheduling for Smart Manufacturing Safe trajectory design for indoor drones using reinforcement-learning-based methods Investigation of reward functions for controlling blood glucose level using reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1