代价敏感的不平衡数据分类的SPFCNN Miner

Linchang Zhao, Zhaowei Shang, Ling Zhao, Yu Wei, Yuanyan Tang
{"title":"代价敏感的不平衡数据分类的SPFCNN Miner","authors":"Linchang Zhao, Zhaowei Shang, Ling Zhao, Yu Wei, Yuanyan Tang","doi":"10.1109/ICWAPR48189.2019.8946485","DOIUrl":null,"url":null,"abstract":"Since the target data are high-dimensional, limited and class-unbalanced distribution in most real-world classification, most conventional classification methods can hardly achieve good classification results on these data. To explore an effective solution, this paper proposes the Siamese Parallel Fully-connected Neural Network (SPFCNN) as a binary classifier and uses the SMOTE method to deal with the problem of class-unbalanced data distribution. Given that classified cases naturally come with costs, cost-sensitive learning is used to improve the performance of the proposed SPFCNN. An extensive computational study is also performed on cost-sensitive SPFCNN, and the results show that the performance of the proposed approach is better than that of the comparison methods.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Sensitive SPFCNN Miner for Classification of Imbalanced Data\",\"authors\":\"Linchang Zhao, Zhaowei Shang, Ling Zhao, Yu Wei, Yuanyan Tang\",\"doi\":\"10.1109/ICWAPR48189.2019.8946485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the target data are high-dimensional, limited and class-unbalanced distribution in most real-world classification, most conventional classification methods can hardly achieve good classification results on these data. To explore an effective solution, this paper proposes the Siamese Parallel Fully-connected Neural Network (SPFCNN) as a binary classifier and uses the SMOTE method to deal with the problem of class-unbalanced data distribution. Given that classified cases naturally come with costs, cost-sensitive learning is used to improve the performance of the proposed SPFCNN. An extensive computational study is also performed on cost-sensitive SPFCNN, and the results show that the performance of the proposed approach is better than that of the comparison methods.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于大多数现实世界分类的目标数据是高维、有限和类不平衡分布的,大多数传统的分类方法很难在这些数据上取得很好的分类效果。为了探索一种有效的解决方案,本文提出了Siamese并行全连接神经网络(Siamese Parallel fully connected Neural Network, SPFCNN)作为二值分类器,并使用SMOTE方法处理类不平衡数据分布问题。考虑到分类案例自然伴随着成本,成本敏感学习被用于改进所提出的SPFCNN的性能。对代价敏感的SPFCNN进行了大量的计算研究,结果表明该方法的性能优于对比方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-Sensitive SPFCNN Miner for Classification of Imbalanced Data
Since the target data are high-dimensional, limited and class-unbalanced distribution in most real-world classification, most conventional classification methods can hardly achieve good classification results on these data. To explore an effective solution, this paper proposes the Siamese Parallel Fully-connected Neural Network (SPFCNN) as a binary classifier and uses the SMOTE method to deal with the problem of class-unbalanced data distribution. Given that classified cases naturally come with costs, cost-sensitive learning is used to improve the performance of the proposed SPFCNN. An extensive computational study is also performed on cost-sensitive SPFCNN, and the results show that the performance of the proposed approach is better than that of the comparison methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Early Esophageal Cancer from Endoscopic Images Based on a Haar Wavelet Feature A Study on Development of Wavelet Deep Learning ICWAPR 2019 Greetings from the General Chairs A Novel Image Zero-Watermarking Scheme Based on Non-Uniform Triangular Partition Data Generation Method Based on Correlation Between Sensors in Photovoltaic Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1