基于散度的云系统服务需求估计方法

Salvatore Dipietro, G. Casale
{"title":"基于散度的云系统服务需求估计方法","authors":"Salvatore Dipietro, G. Casale","doi":"10.1109/FiCloud.2019.00035","DOIUrl":null,"url":null,"abstract":"Estimating performance models parameters of cloud systems presents several challenges due to the distributed nature of the applications, the chains of interactions of requests with architectural nodes, and the parallelism and coordination mechanisms implemented within these systems. In this work, we present a new inference algorithm for model parameters, called state divergence (SD) algorithm, to accurately estimate resource demands in a complex cloud application. Differently from existing approaches, SD attempts to minimize the divergence between observed and modeled marginal state probabilities for individual nodes within an application, therefore requiring the availability of probabilistic measures from both the system and the underpinning model. Validation against a case study using the Apache Cassandra NoSQL database and random experiments show that SD can accurately predict demands and improve system behavior modeling and prediction.","PeriodicalId":268882,"journal":{"name":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SD: A Divergence-Based Estimation Method for Service Demands in Cloud Systems\",\"authors\":\"Salvatore Dipietro, G. Casale\",\"doi\":\"10.1109/FiCloud.2019.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating performance models parameters of cloud systems presents several challenges due to the distributed nature of the applications, the chains of interactions of requests with architectural nodes, and the parallelism and coordination mechanisms implemented within these systems. In this work, we present a new inference algorithm for model parameters, called state divergence (SD) algorithm, to accurately estimate resource demands in a complex cloud application. Differently from existing approaches, SD attempts to minimize the divergence between observed and modeled marginal state probabilities for individual nodes within an application, therefore requiring the availability of probabilistic measures from both the system and the underpinning model. Validation against a case study using the Apache Cassandra NoSQL database and random experiments show that SD can accurately predict demands and improve system behavior modeling and prediction.\",\"PeriodicalId\":268882,\"journal\":{\"name\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2019.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于应用程序的分布式特性、与体系结构节点的请求交互链以及在这些系统中实现的并行性和协调机制,估计云系统的性能模型参数会带来一些挑战。在这项工作中,我们提出了一种新的模型参数推理算法,称为状态发散(SD)算法,以准确估计复杂云应用程序中的资源需求。与现有方法不同,SD试图最小化应用程序中单个节点的观察和建模边缘状态概率之间的差异,因此需要系统和基础模型的概率度量的可用性。使用Apache Cassandra NoSQL数据库和随机实验进行的案例研究验证表明,SD可以准确预测需求,并改进系统行为建模和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SD: A Divergence-Based Estimation Method for Service Demands in Cloud Systems
Estimating performance models parameters of cloud systems presents several challenges due to the distributed nature of the applications, the chains of interactions of requests with architectural nodes, and the parallelism and coordination mechanisms implemented within these systems. In this work, we present a new inference algorithm for model parameters, called state divergence (SD) algorithm, to accurately estimate resource demands in a complex cloud application. Differently from existing approaches, SD attempts to minimize the divergence between observed and modeled marginal state probabilities for individual nodes within an application, therefore requiring the availability of probabilistic measures from both the system and the underpinning model. Validation against a case study using the Apache Cassandra NoSQL database and random experiments show that SD can accurately predict demands and improve system behavior modeling and prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bazaar-Contract: A Smart Contract for Binding Multi-Round Bilateral Negotiations on Cloud Markets AL and S Methods: Two Extensions for L-Method Intelligent Solutions for Secure Communication and Collaboration Based on Cloud Technologies IoTSP: Thread Mesh vs Other Widely used Wireless Protocols – Comparison and use Cases Study A Framework for Distributed Denial of Service Attack Detection and Reactive Countermeasure in Software Defined Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1