基于连接分量的ROI选择提高乳房x线图像微钙化的识别

M. Haque, K. M. Imtiaz-Ud-Din, M. Rahman, Aminur Rahman
{"title":"基于连接分量的ROI选择提高乳房x线图像微钙化的识别","authors":"M. Haque, K. M. Imtiaz-Ud-Din, M. Rahman, Aminur Rahman","doi":"10.1109/ICECE.2014.7026990","DOIUrl":null,"url":null,"abstract":"In this paper, we propose automated image processing method for mammogram image analysis to enhance the classification of malignant and benign clustered micro calcifications. Mini-Mias, one of the most renowned mammogram dataset, is used for our experiment. Region of interest (ROI) is selected using connected component labeling method. Shape and textural features are computed and used in five different classifiers to validate the correctness of labeling method usage for this specific research. Experimental results show that Random Forest and Bagging classifier can produce best classification accuracy among them. We used Receiver operating characteristic (ROC) analysis to asses and differentiate the classification performance from different methods. Random Forest and Bagging, both classifiers provide more than 99% accuracy.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connected component based ROI selection to improve identification of microcalcification from mammogram images\",\"authors\":\"M. Haque, K. M. Imtiaz-Ud-Din, M. Rahman, Aminur Rahman\",\"doi\":\"10.1109/ICECE.2014.7026990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose automated image processing method for mammogram image analysis to enhance the classification of malignant and benign clustered micro calcifications. Mini-Mias, one of the most renowned mammogram dataset, is used for our experiment. Region of interest (ROI) is selected using connected component labeling method. Shape and textural features are computed and used in five different classifiers to validate the correctness of labeling method usage for this specific research. Experimental results show that Random Forest and Bagging classifier can produce best classification accuracy among them. We used Receiver operating characteristic (ROC) analysis to asses and differentiate the classification performance from different methods. Random Forest and Bagging, both classifiers provide more than 99% accuracy.\",\"PeriodicalId\":335492,\"journal\":{\"name\":\"8th International Conference on Electrical and Computer Engineering\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th International Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE.2014.7026990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7026990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种用于乳房x光图像分析的自动图像处理方法,以增强恶性和良性聚集性微钙化的分类。我们的实验使用了最著名的乳房x光数据集之一Mini-Mias。利用连通分量标记法选择感兴趣区域。计算形状和纹理特征,并在五种不同的分类器中使用,以验证标记方法用于本特定研究的正确性。实验结果表明,随机森林分类器和Bagging分类器的分类精度最好。我们使用受试者工作特征(ROC)分析来评估和区分不同方法的分类性能。随机森林和Bagging,这两个分类器都提供了超过99%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connected component based ROI selection to improve identification of microcalcification from mammogram images
In this paper, we propose automated image processing method for mammogram image analysis to enhance the classification of malignant and benign clustered micro calcifications. Mini-Mias, one of the most renowned mammogram dataset, is used for our experiment. Region of interest (ROI) is selected using connected component labeling method. Shape and textural features are computed and used in five different classifiers to validate the correctness of labeling method usage for this specific research. Experimental results show that Random Forest and Bagging classifier can produce best classification accuracy among them. We used Receiver operating characteristic (ROC) analysis to asses and differentiate the classification performance from different methods. Random Forest and Bagging, both classifiers provide more than 99% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical prediction of optical transitions in metallic armchair SWCNTs Dynamics of fullerene self-insertion into carbon nanotubes in water Diffusion tensor based global tractography of human brain fiber bundles Biomass quality analysis for power generation Video-based affinity group detection using trajectories of multiple subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1