基于模拟电阻性开关存储器(RRAM)的线性系统快速求解

Zhong Sun, G. Pedretti, D. Ielmini
{"title":"基于模拟电阻性开关存储器(RRAM)的线性系统快速求解","authors":"Zhong Sun, G. Pedretti, D. Ielmini","doi":"10.1109/ICRC.2019.8914709","DOIUrl":null,"url":null,"abstract":"The in-memory solution of linear systems with analog resistive switching memory in one computational step has been recently reported. In this work, we investigate the time complexity of solving linear systems with the circuit, based on the feedback theory of amplifiers. The result shows that the computing time is explicitly independent on the problem size N, rather it is dominated by the minimal eigenvalue of an associated matrix. By addressing the Toeplitz matrix and the Wishart matrix, we show that the computing time increases with log(N) or N1/2, respectively, thus indicating a significant speed-up of in-memory computing over classical digital computing for solving linear systems. For sparse positive-definite matrix that is targeted by a quantum computing algorithm, the in-memory computing circuit also shows a computing time superiority. These results support in-memory computing as a strong candidate for fast and energy-efficient accelerators of big data analytics and machine learning.","PeriodicalId":297574,"journal":{"name":"2019 IEEE International Conference on Rebooting Computing (ICRC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast Solution of Linear Systems with Analog Resistive Switching Memory (RRAM)\",\"authors\":\"Zhong Sun, G. Pedretti, D. Ielmini\",\"doi\":\"10.1109/ICRC.2019.8914709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The in-memory solution of linear systems with analog resistive switching memory in one computational step has been recently reported. In this work, we investigate the time complexity of solving linear systems with the circuit, based on the feedback theory of amplifiers. The result shows that the computing time is explicitly independent on the problem size N, rather it is dominated by the minimal eigenvalue of an associated matrix. By addressing the Toeplitz matrix and the Wishart matrix, we show that the computing time increases with log(N) or N1/2, respectively, thus indicating a significant speed-up of in-memory computing over classical digital computing for solving linear systems. For sparse positive-definite matrix that is targeted by a quantum computing algorithm, the in-memory computing circuit also shows a computing time superiority. These results support in-memory computing as a strong candidate for fast and energy-efficient accelerators of big data analytics and machine learning.\",\"PeriodicalId\":297574,\"journal\":{\"name\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2019.8914709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2019.8914709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

具有模拟电阻开关存储器的线性系统的内存解在一个计算步骤中得到了最近的报道。在这项工作中,我们基于放大器的反馈理论,研究了用电路求解线性系统的时间复杂度。结果表明,计算时间与问题大小N显式无关,而是由关联矩阵的最小特征值支配。通过求解Toeplitz矩阵和Wishart矩阵,我们表明计算时间分别以log(N)或N1/2增加,从而表明在求解线性系统时内存计算比经典数字计算有显着的加速。对于量子计算算法所针对的稀疏正定矩阵,内存计算电路也显示出计算时间上的优势。这些结果支持内存计算作为大数据分析和机器学习的快速和节能加速器的有力候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Solution of Linear Systems with Analog Resistive Switching Memory (RRAM)
The in-memory solution of linear systems with analog resistive switching memory in one computational step has been recently reported. In this work, we investigate the time complexity of solving linear systems with the circuit, based on the feedback theory of amplifiers. The result shows that the computing time is explicitly independent on the problem size N, rather it is dominated by the minimal eigenvalue of an associated matrix. By addressing the Toeplitz matrix and the Wishart matrix, we show that the computing time increases with log(N) or N1/2, respectively, thus indicating a significant speed-up of in-memory computing over classical digital computing for solving linear systems. For sparse positive-definite matrix that is targeted by a quantum computing algorithm, the in-memory computing circuit also shows a computing time superiority. These results support in-memory computing as a strong candidate for fast and energy-efficient accelerators of big data analytics and machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Entangled State Preparation for Non-Binary Quantum Computing Integrated Photonics Architectures for Residue Number System Computations Experimental Insights from the Rogues Gallery Message from the 2019 ICRC General Co-Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1