基于局部加权学习的未知非线性系统最优调节

Wenjie Dong, J. Farrell
{"title":"基于局部加权学习的未知非线性系统最优调节","authors":"Wenjie Dong, J. Farrell","doi":"10.1109/ISIC.2008.4635938","DOIUrl":null,"url":null,"abstract":"This paper considers the optimal control of unknown nonlinear systems. To deal with the uncertainties in the system, a locally weighted learning observer (LWLO) is proposed. Using the functions approximated within the LWLO, analytic optimal controllers are proposed in the sense of pointwise min-norm. To show effectiveness of the proposed controllers, numerical simulations are presented.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal Regulation of Unknown Nonlinear Systems Based on Locally Weighted Learning\",\"authors\":\"Wenjie Dong, J. Farrell\",\"doi\":\"10.1109/ISIC.2008.4635938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the optimal control of unknown nonlinear systems. To deal with the uncertainties in the system, a locally weighted learning observer (LWLO) is proposed. Using the functions approximated within the LWLO, analytic optimal controllers are proposed in the sense of pointwise min-norm. To show effectiveness of the proposed controllers, numerical simulations are presented.\",\"PeriodicalId\":342070,\"journal\":{\"name\":\"2008 IEEE International Symposium on Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2008.4635938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究未知非线性系统的最优控制问题。为了处理系统中的不确定性,提出了一种局部加权学习观测器。利用LWLO内逼近的函数,提出了逐点最小范数意义上的解析最优控制器。为了验证所提控制器的有效性,进行了数值仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Regulation of Unknown Nonlinear Systems Based on Locally Weighted Learning
This paper considers the optimal control of unknown nonlinear systems. To deal with the uncertainties in the system, a locally weighted learning observer (LWLO) is proposed. Using the functions approximated within the LWLO, analytic optimal controllers are proposed in the sense of pointwise min-norm. To show effectiveness of the proposed controllers, numerical simulations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Intelligent Control Scheme for Activated Sludge Wastewater Treatment Deterministic Learning and Rapid Dynamical Pattern Recognition of Discrete-Time Systems Dynamic Mode, Probe Based High Density Data Storage: A collaborative effort with IBM, Zurich Research Labs A Multi-agent System for Integrated Control and Asset Management of Petroleum Production Facilities - Part 2: Prototype Design Verification Discrete-time Neural Network Control for a Linear Induction Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1