基于机器学习的盐冰下油的检测与厚度估计

Mahmoud Altrabolsi, C. Labaki, I. Elhajj, Daniel C. Asmar
{"title":"基于机器学习的盐冰下油的检测与厚度估计","authors":"Mahmoud Altrabolsi, C. Labaki, I. Elhajj, Daniel C. Asmar","doi":"10.1109/SAS54819.2022.9881245","DOIUrl":null,"url":null,"abstract":"Electrical Capacitance Tomography (ECT) for coplanar electrodes has been used in very few applications with non-destructive single side access to detect changes in the sensing domain. In such applications, the image reconstruction algorithms are usually applied to image a horizontal cross section of the sensing domain and are not always accurate. In this paper, we propose performing image reconstruction for a vertical cross section of the sensing domain. Inspired by ECT solutions applied to pipes, we use machine-learning to estimate the presence (classification) and thickness (regression) of oil layers between saline ice layer and seawater. Results on simulated data demonstrated good performance in classification with an f1 score exceeding 90%, as well as in regression with a mean percentage error of -8.148%, a mean squared error of 14.952, and a mean absolute error (MAE) of 2.933 mm for a sensing domain 45 mm deep.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Thickness Estimation of Oil under Saline Ice Using Machine Learning\",\"authors\":\"Mahmoud Altrabolsi, C. Labaki, I. Elhajj, Daniel C. Asmar\",\"doi\":\"10.1109/SAS54819.2022.9881245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical Capacitance Tomography (ECT) for coplanar electrodes has been used in very few applications with non-destructive single side access to detect changes in the sensing domain. In such applications, the image reconstruction algorithms are usually applied to image a horizontal cross section of the sensing domain and are not always accurate. In this paper, we propose performing image reconstruction for a vertical cross section of the sensing domain. Inspired by ECT solutions applied to pipes, we use machine-learning to estimate the presence (classification) and thickness (regression) of oil layers between saline ice layer and seawater. Results on simulated data demonstrated good performance in classification with an f1 score exceeding 90%, as well as in regression with a mean percentage error of -8.148%, a mean squared error of 14.952, and a mean absolute error (MAE) of 2.933 mm for a sensing domain 45 mm deep.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电容层析成像(ECT)用于共面电极的非破坏性单侧访问,用于检测传感域的变化。在此类应用中,图像重建算法通常应用于感知域水平截面的图像,并且并不总是准确的。在本文中,我们建议对传感域的垂直横截面进行图像重建。受应用于管道的ECT解决方案的启发,我们使用机器学习来估计盐层和海水之间油层的存在(分类)和厚度(回归)。在模拟数据上的结果表明,该方法具有良好的分类性能,f1得分超过90%;在深度为45 mm的感知域上,回归的平均百分比误差为-8.148%,均方误差为14.952,平均绝对误差(MAE)为2.933 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Thickness Estimation of Oil under Saline Ice Using Machine Learning
Electrical Capacitance Tomography (ECT) for coplanar electrodes has been used in very few applications with non-destructive single side access to detect changes in the sensing domain. In such applications, the image reconstruction algorithms are usually applied to image a horizontal cross section of the sensing domain and are not always accurate. In this paper, we propose performing image reconstruction for a vertical cross section of the sensing domain. Inspired by ECT solutions applied to pipes, we use machine-learning to estimate the presence (classification) and thickness (regression) of oil layers between saline ice layer and seawater. Results on simulated data demonstrated good performance in classification with an f1 score exceeding 90%, as well as in regression with a mean percentage error of -8.148%, a mean squared error of 14.952, and a mean absolute error (MAE) of 2.933 mm for a sensing domain 45 mm deep.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor Data Communication via Light Guide Body for Monitoring Vehicle Batteries Automatic Extraction of Muscle Fascicle Pennation Angle from Raw Ultrasound Data Printed wireless battery-free sensor tag for structural health monitoring of natural fiber composites Improvement of Door Recognition Algorithm using Lidar and RGB-D camera for Mobile Manipulator Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1