一种新的闪烁强度预报方法

H. J. Lu, G. Chang, H. Su
{"title":"一种新的闪烁强度预报方法","authors":"H. J. Lu, G. Chang, H. Su","doi":"10.1109/PESMG.2013.6672712","DOIUrl":null,"url":null,"abstract":"Precisely forecasting the flicker level is important for drastic voltage fluctuations associated with the rapid reactive power consumptions of electric arc furnace (EAF) loads. This paper presents a prediction model based on grey theory combined with radial basis function neural network (RBFNN) for the forecast of flicker severity caused by the operation of a dc and an ac EAF loads, respectively. Test results based on the proposed model are compared with two other neural network methods. It shows that more accurate forecast is achieved for the flicker prediction based on the proposed method.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new method for flicker severity forecast\",\"authors\":\"H. J. Lu, G. Chang, H. Su\",\"doi\":\"10.1109/PESMG.2013.6672712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precisely forecasting the flicker level is important for drastic voltage fluctuations associated with the rapid reactive power consumptions of electric arc furnace (EAF) loads. This paper presents a prediction model based on grey theory combined with radial basis function neural network (RBFNN) for the forecast of flicker severity caused by the operation of a dc and an ac EAF loads, respectively. Test results based on the proposed model are compared with two other neural network methods. It shows that more accurate forecast is achieved for the flicker prediction based on the proposed method.\",\"PeriodicalId\":433870,\"journal\":{\"name\":\"2013 IEEE Power & Energy Society General Meeting\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESMG.2013.6672712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于电弧炉(EAF)负荷快速无功消耗引起的电压剧烈波动,准确预测闪变水平是非常重要的。本文提出了一种基于灰色理论和径向基函数神经网络(RBFNN)相结合的预测模型,分别用于直流和交流电炉负荷运行时闪变严重程度的预测。基于该模型的测试结果与其他两种神经网络方法进行了比较。结果表明,基于该方法的闪变预测精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method for flicker severity forecast
Precisely forecasting the flicker level is important for drastic voltage fluctuations associated with the rapid reactive power consumptions of electric arc furnace (EAF) loads. This paper presents a prediction model based on grey theory combined with radial basis function neural network (RBFNN) for the forecast of flicker severity caused by the operation of a dc and an ac EAF loads, respectively. Test results based on the proposed model are compared with two other neural network methods. It shows that more accurate forecast is achieved for the flicker prediction based on the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterizing statistical bounds on aggregated demand-based primary frequency control SGSim: A unified smart grid simulator FIDVR events analysis part 1 Solid state transformer in the future smart electrical system Challenges for special protection systems in the Chilean electricity market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1