用于神经形态计算的铁电隧道连接并行突触设计

Taehwan Moon, Hyun-Yong Lee, S. Nam, H. Bae, Duk-Hyun Choe, Sanghyun Jo, Yunseong Lee, Yoon-Ho Park, J. Yang, J. Heo
{"title":"用于神经形态计算的铁电隧道连接并行突触设计","authors":"Taehwan Moon, Hyun-Yong Lee, S. Nam, H. Bae, Duk-Hyun Choe, Sanghyun Jo, Yunseong Lee, Yoon-Ho Park, J. Yang, J. Heo","doi":"10.1088/2634-4386/accc51","DOIUrl":null,"url":null,"abstract":"We propose a novel synaptic design of more efficient neuromorphic edge-computing with substantially improved linearity and extremely low variability. Specifically, a parallel arrangement of ferroelectric tunnel junctions (FTJ) with an incremental pulsing scheme provides a great improvement in linearity for synaptic weight updating by averaging weight update rates of multiple devices. To enable such design with FTJ building blocks, we have demonstrated the lowest reported variability: σ/μ = 0.036 for cycle to cycle and σ/μ = 0.032 for device among six dies across an 8 inch wafer. With such devices, we further show improved synaptic performance and pattern recognition accuracy through experiments combined with simulations.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel synaptic design of ferroelectric tunnel junctions for neuromorphic computing\",\"authors\":\"Taehwan Moon, Hyun-Yong Lee, S. Nam, H. Bae, Duk-Hyun Choe, Sanghyun Jo, Yunseong Lee, Yoon-Ho Park, J. Yang, J. Heo\",\"doi\":\"10.1088/2634-4386/accc51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel synaptic design of more efficient neuromorphic edge-computing with substantially improved linearity and extremely low variability. Specifically, a parallel arrangement of ferroelectric tunnel junctions (FTJ) with an incremental pulsing scheme provides a great improvement in linearity for synaptic weight updating by averaging weight update rates of multiple devices. To enable such design with FTJ building blocks, we have demonstrated the lowest reported variability: σ/μ = 0.036 for cycle to cycle and σ/μ = 0.032 for device among six dies across an 8 inch wafer. With such devices, we further show improved synaptic performance and pattern recognition accuracy through experiments combined with simulations.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/accc51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/accc51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种新的突触设计,更有效的神经形态边缘计算具有显著改善的线性和极低的可变性。具体而言,采用增量脉冲方案的铁电隧道结(FTJ)平行排列,通过平均多个器件的权重更新率,大大提高了突触权重更新的线性度。为了实现FTJ构建模块的这种设计,我们已经证明了最低的可变性:σ/μ = 0.036周期和σ/μ = 0.032在8英寸晶圆上的六个芯片之间的器件。利用这些装置,我们通过实验结合模拟进一步证明了突触性能和模式识别精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel synaptic design of ferroelectric tunnel junctions for neuromorphic computing
We propose a novel synaptic design of more efficient neuromorphic edge-computing with substantially improved linearity and extremely low variability. Specifically, a parallel arrangement of ferroelectric tunnel junctions (FTJ) with an incremental pulsing scheme provides a great improvement in linearity for synaptic weight updating by averaging weight update rates of multiple devices. To enable such design with FTJ building blocks, we have demonstrated the lowest reported variability: σ/μ = 0.036 for cycle to cycle and σ/μ = 0.032 for device among six dies across an 8 inch wafer. With such devices, we further show improved synaptic performance and pattern recognition accuracy through experiments combined with simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1