基于交叉熵法优化的最近邻MPPT

R. Machlev, Y. Levron
{"title":"基于交叉熵法优化的最近邻MPPT","authors":"R. Machlev, Y. Levron","doi":"10.1109/ICSEE.2018.8646091","DOIUrl":null,"url":null,"abstract":"Maximum power point tracking (MPPT) techniques are being used to improve the efficiency of photovoltaic (PV) systems. In this paper, a Nearest Neighbor(NN)-based MPPT with Cross-Entropy (CE) Method optimization algorithm is proposed. The proposed method is system-independent, accurate and easy to implement. the performance of the algorithm is validate in simulation using profile of different irradiances.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nearest Neighbor MPPT with Cross-Entropy Method optimization\",\"authors\":\"R. Machlev, Y. Levron\",\"doi\":\"10.1109/ICSEE.2018.8646091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum power point tracking (MPPT) techniques are being used to improve the efficiency of photovoltaic (PV) systems. In this paper, a Nearest Neighbor(NN)-based MPPT with Cross-Entropy (CE) Method optimization algorithm is proposed. The proposed method is system-independent, accurate and easy to implement. the performance of the algorithm is validate in simulation using profile of different irradiances.\",\"PeriodicalId\":254455,\"journal\":{\"name\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEE.2018.8646091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最大功率点跟踪(MPPT)技术被用于提高光伏发电系统的效率。提出了一种基于交叉熵方法的最近邻优化算法。该方法与系统无关,精度高,易于实现。利用不同辐照度的轮廓进行了仿真,验证了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nearest Neighbor MPPT with Cross-Entropy Method optimization
Maximum power point tracking (MPPT) techniques are being used to improve the efficiency of photovoltaic (PV) systems. In this paper, a Nearest Neighbor(NN)-based MPPT with Cross-Entropy (CE) Method optimization algorithm is proposed. The proposed method is system-independent, accurate and easy to implement. the performance of the algorithm is validate in simulation using profile of different irradiances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Motion Compensation for Forensic Analysis of Egocentric Video using Joint Stabilization and Tracking DC low current Hall effect measurements Examining Change Detection Methods For Hyperspectral Data Effect of Reverberation in Speech-based Emotion Recognition Traveling-Wave Ring Oscillator – Simulations and Prototype Measurements for a New Architecture for a Transmission Line Based Oscillator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1