彩色图像检索的性能评价

E. Mendi, Coskun Bayrak
{"title":"彩色图像检索的性能评价","authors":"E. Mendi, Coskun Bayrak","doi":"10.1109/AIPR.2010.5759680","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the capabilities of 4 approaches for image search for a CBIR system. First two approaches are based on comparing the images using color histograms of RGB and HSV spaces, respectively. The other 2 approaches are based on two quantitative image fidelity measurements, Mean Square Error (MSE) and Structural Similarity Index (SSIM), which provide a degree of similarity between two images. The precision performances of approaches have been evaluated by using a public image database containing 1000 images. Finally effectiveness of retrieval has been measured for each method.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance evaluation of color image retrieval\",\"authors\":\"E. Mendi, Coskun Bayrak\",\"doi\":\"10.1109/AIPR.2010.5759680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated the capabilities of 4 approaches for image search for a CBIR system. First two approaches are based on comparing the images using color histograms of RGB and HSV spaces, respectively. The other 2 approaches are based on two quantitative image fidelity measurements, Mean Square Error (MSE) and Structural Similarity Index (SSIM), which provide a degree of similarity between two images. The precision performances of approaches have been evaluated by using a public image database containing 1000 images. Finally effectiveness of retrieval has been measured for each method.\",\"PeriodicalId\":128378,\"journal\":{\"name\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2010.5759680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了4种方法的图像搜索能力,为一个CBIR系统。前两种方法分别基于比较使用RGB和HSV空间的颜色直方图的图像。另外两种方法基于两种定量图像保真度测量,均方误差(MSE)和结构相似指数(SSIM),它们提供了两幅图像之间的相似程度。通过包含1000张图像的公共图像数据库,对方法的精度性能进行了评估。最后对每种方法的检索效果进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of color image retrieval
In this paper, we have investigated the capabilities of 4 approaches for image search for a CBIR system. First two approaches are based on comparing the images using color histograms of RGB and HSV spaces, respectively. The other 2 approaches are based on two quantitative image fidelity measurements, Mean Square Error (MSE) and Structural Similarity Index (SSIM), which provide a degree of similarity between two images. The precision performances of approaches have been evaluated by using a public image database containing 1000 images. Finally effectiveness of retrieval has been measured for each method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated cross-sensor registration, orthorectification and geopositioning using LIDAR digital elevation models Gray-level co-occurrence matrices as features in edge enhanced images Rock image segmentation using watershed with shape markers Adaptive selection of visual and infra-red image fusion rules Tactical geospatial intelligence from full motion video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1