人脸和虹膜生物识别的呈现攻击检测算法

Ramachandra Raghavendra, C. Busch
{"title":"人脸和虹膜生物识别的呈现攻击检测算法","authors":"Ramachandra Raghavendra, C. Busch","doi":"10.5281/ZENODO.43982","DOIUrl":null,"url":null,"abstract":"Biometric systems are vulnerable to the diverse attacks that emerged as a challenge to assure the reliability in adopting these systems in real-life scenario. In this work, we propose a novel solution to detect a presentation attack based on exploring both statistical and Cepstral features. The proposed Presentation Attack Detection (PAD) algorithm will extract the statistical features that can capture the micro-texture variation using Binarized Statistical Image Features (BSIF) and Cepstral features that can reflect the micro changes in frequency using 2D Cepstrum analysis. We then fuse these features to form a single feature vector before making a decision on whether a capture attempt is a normal presentation or an artefact presentation using linear Support Vector Machine (SVM). Extensive experiments carried out on a publicly available face and iris spoof database show the efficacy of the proposed PAD algorithm with an Average Classification Error Rate (ACER) = 10.21% on face and ACER = 0% on the iris biometrics.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Presentation attack detection algorithm for face and iris biometrics\",\"authors\":\"Ramachandra Raghavendra, C. Busch\",\"doi\":\"10.5281/ZENODO.43982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric systems are vulnerable to the diverse attacks that emerged as a challenge to assure the reliability in adopting these systems in real-life scenario. In this work, we propose a novel solution to detect a presentation attack based on exploring both statistical and Cepstral features. The proposed Presentation Attack Detection (PAD) algorithm will extract the statistical features that can capture the micro-texture variation using Binarized Statistical Image Features (BSIF) and Cepstral features that can reflect the micro changes in frequency using 2D Cepstrum analysis. We then fuse these features to form a single feature vector before making a decision on whether a capture attempt is a normal presentation or an artefact presentation using linear Support Vector Machine (SVM). Extensive experiments carried out on a publicly available face and iris spoof database show the efficacy of the proposed PAD algorithm with an Average Classification Error Rate (ACER) = 10.21% on face and ACER = 0% on the iris biometrics.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

生物识别系统容易受到各种各样的攻击,这对确保在现实生活中采用这些系统的可靠性构成了挑战。在这项工作中,我们提出了一种基于探索统计和倒谱特征来检测表示攻击的新解决方案。本文提出的呈现攻击检测(PAD)算法将利用二值化统计图像特征(BSIF)提取能够捕捉微观纹理变化的统计特征,利用二维倒谱分析提取能够反映微观频率变化的倒谱特征。然后,在使用线性支持向量机(SVM)决定捕获尝试是正常表示还是人工表示之前,我们将这些特征融合以形成单个特征向量。在一个公开的人脸和虹膜欺骗数据库上进行的大量实验表明,所提出的PAD算法在人脸和虹膜生物特征上的平均分类错误率(ACER)分别为10.21%和0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Presentation attack detection algorithm for face and iris biometrics
Biometric systems are vulnerable to the diverse attacks that emerged as a challenge to assure the reliability in adopting these systems in real-life scenario. In this work, we propose a novel solution to detect a presentation attack based on exploring both statistical and Cepstral features. The proposed Presentation Attack Detection (PAD) algorithm will extract the statistical features that can capture the micro-texture variation using Binarized Statistical Image Features (BSIF) and Cepstral features that can reflect the micro changes in frequency using 2D Cepstrum analysis. We then fuse these features to form a single feature vector before making a decision on whether a capture attempt is a normal presentation or an artefact presentation using linear Support Vector Machine (SVM). Extensive experiments carried out on a publicly available face and iris spoof database show the efficacy of the proposed PAD algorithm with an Average Classification Error Rate (ACER) = 10.21% on face and ACER = 0% on the iris biometrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1