支持向量机在模式分类中的应用

H. Men, Yujie Wu, Yanchun Gao, Xiaoying Li, Shanrang Yang
{"title":"支持向量机在模式分类中的应用","authors":"H. Men, Yujie Wu, Yanchun Gao, Xiaoying Li, Shanrang Yang","doi":"10.1109/ICOSP.2008.4697444","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is applied for classification in this paper. The SVM operates on the principle of structure risk minimization; hence better generalization ability is guaranteed. This paper discussed the basic principle of the SVM at first, and then we chose SVM classifier with polynomial kernel and the Gaussian radial basis function kernel (RBFSVM) to recognize the cancer samples (benign and malignant). Selecting some value for parameters to know different performance each parameter produces to outputs. The simulations of the recognizing of two class samples have been presented and discussed. Results show the RBF SVM can classify complicated patterns and achieve higher recognition rate. SVM overcomes disadvantages of the artificial neural networks. The results indicate that the SVM classifier exhibits good generalization performance and the recognition rate above 93.33% for the testing samples. This means the support vector machines are effective for classification.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of support vector machine to pattern classification\",\"authors\":\"H. Men, Yujie Wu, Yanchun Gao, Xiaoying Li, Shanrang Yang\",\"doi\":\"10.1109/ICOSP.2008.4697444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine (SVM) is applied for classification in this paper. The SVM operates on the principle of structure risk minimization; hence better generalization ability is guaranteed. This paper discussed the basic principle of the SVM at first, and then we chose SVM classifier with polynomial kernel and the Gaussian radial basis function kernel (RBFSVM) to recognize the cancer samples (benign and malignant). Selecting some value for parameters to know different performance each parameter produces to outputs. The simulations of the recognizing of two class samples have been presented and discussed. Results show the RBF SVM can classify complicated patterns and achieve higher recognition rate. SVM overcomes disadvantages of the artificial neural networks. The results indicate that the SVM classifier exhibits good generalization performance and the recognition rate above 93.33% for the testing samples. This means the support vector machines are effective for classification.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用支持向量机(SVM)进行分类。支持向量机的工作原理是结构风险最小化;从而保证了更好的泛化能力。本文首先讨论了支持向量机的基本原理,然后选择多项式核支持向量机分类器和高斯径向基函数核支持向量机(RBFSVM)分类器对肿瘤样本(良性和恶性)进行识别。为参数选择一些值,以了解每个参数对输出产生的不同性能。给出并讨论了两类样本识别的仿真结果。结果表明,RBF支持向量机能够对复杂的模式进行分类,并取得了较高的识别率。支持向量机克服了人工神经网络的缺点。结果表明,SVM分类器具有良好的泛化性能,对测试样本的识别率在93.33%以上。这意味着支持向量机对分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of support vector machine to pattern classification
Support vector machine (SVM) is applied for classification in this paper. The SVM operates on the principle of structure risk minimization; hence better generalization ability is guaranteed. This paper discussed the basic principle of the SVM at first, and then we chose SVM classifier with polynomial kernel and the Gaussian radial basis function kernel (RBFSVM) to recognize the cancer samples (benign and malignant). Selecting some value for parameters to know different performance each parameter produces to outputs. The simulations of the recognizing of two class samples have been presented and discussed. Results show the RBF SVM can classify complicated patterns and achieve higher recognition rate. SVM overcomes disadvantages of the artificial neural networks. The results indicate that the SVM classifier exhibits good generalization performance and the recognition rate above 93.33% for the testing samples. This means the support vector machines are effective for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1