LS-SVM稀疏逼近在LPV-ARX模型识别中的应用

L. Cavanini, F. Ferracuti, S. Longhi, E. Marchegiani, A. Monteriù
{"title":"LS-SVM稀疏逼近在LPV-ARX模型识别中的应用","authors":"L. Cavanini, F. Ferracuti, S. Longhi, E. Marchegiani, A. Monteriù","doi":"10.23919/AEITAUTOMOTIVE50086.2020.9307401","DOIUrl":null,"url":null,"abstract":"Least Squares Support Vector Machine (LS-SVM) has been recently applied to non-parametric identification of Linear Parameter Varying (LPV) systems, described by the AutoRegressive with eXogenous input (ARX). However, the online application of LPV-ARX system in the LS-SVM setting requires high computational time, related to the number of training data used to compute the coefficients of the identified model, limiting the possibility to use the method to real-time applications. In this paper, the authors propose the Low-Rank (LR) matrix approximation and a pruning based approach to compute a sparse solution. In particular, the pruning algorithm is considered to compute off-line a sparse solution of Lagrangian multipliers and then speed up the testing stage, whereas the LR matrix approximation allows to speed up the training stage. The proposed approach has been tested by identifying a subsystem of a vehicle powertrain model by the input/output data collected from the simulation model. The proposed approach has been compared with respect to the standard approach based on LS-SVM. The methods are tested on the considered real-world problem and the proposed approach permits to reduce the execution time of about 77% on average in the considered identification problem, corresponding to a degradation of the identification result less than 0.2% with respect to the standard solution.","PeriodicalId":104806,"journal":{"name":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse Approximation of LS-SVM for LPV-ARX Model Identification: Application to a Powertrain Subsystem\",\"authors\":\"L. Cavanini, F. Ferracuti, S. Longhi, E. Marchegiani, A. Monteriù\",\"doi\":\"10.23919/AEITAUTOMOTIVE50086.2020.9307401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Least Squares Support Vector Machine (LS-SVM) has been recently applied to non-parametric identification of Linear Parameter Varying (LPV) systems, described by the AutoRegressive with eXogenous input (ARX). However, the online application of LPV-ARX system in the LS-SVM setting requires high computational time, related to the number of training data used to compute the coefficients of the identified model, limiting the possibility to use the method to real-time applications. In this paper, the authors propose the Low-Rank (LR) matrix approximation and a pruning based approach to compute a sparse solution. In particular, the pruning algorithm is considered to compute off-line a sparse solution of Lagrangian multipliers and then speed up the testing stage, whereas the LR matrix approximation allows to speed up the training stage. The proposed approach has been tested by identifying a subsystem of a vehicle powertrain model by the input/output data collected from the simulation model. The proposed approach has been compared with respect to the standard approach based on LS-SVM. The methods are tested on the considered real-world problem and the proposed approach permits to reduce the execution time of about 77% on average in the considered identification problem, corresponding to a degradation of the identification result less than 0.2% with respect to the standard solution.\",\"PeriodicalId\":104806,\"journal\":{\"name\":\"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最小二乘支持向量机(LS-SVM)最近被应用于线性变参数系统(LPV)的非参数识别,该系统由外生输入的自回归(ARX)描述。然而,LPV-ARX系统在LS-SVM设置下的在线应用需要较高的计算时间,这与用于计算识别模型系数的训练数据的数量有关,限制了将该方法用于实时应用的可能性。在本文中,作者提出了低秩(LR)矩阵逼近和基于剪枝的方法来计算稀疏解。特别是,修剪算法被认为是离线计算拉格朗日乘子的稀疏解,然后加快测试阶段,而LR矩阵近似允许加快训练阶段。通过仿真模型采集的输入/输出数据对某汽车动力总成模型的子系统进行识别,验证了该方法的有效性。将该方法与基于LS-SVM的标准方法进行了比较。这些方法在考虑的实际问题上进行了测试,所提出的方法允许在考虑的识别问题中平均减少约77%的执行时间,对应于识别结果相对于标准解决方案的退化小于0.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Approximation of LS-SVM for LPV-ARX Model Identification: Application to a Powertrain Subsystem
Least Squares Support Vector Machine (LS-SVM) has been recently applied to non-parametric identification of Linear Parameter Varying (LPV) systems, described by the AutoRegressive with eXogenous input (ARX). However, the online application of LPV-ARX system in the LS-SVM setting requires high computational time, related to the number of training data used to compute the coefficients of the identified model, limiting the possibility to use the method to real-time applications. In this paper, the authors propose the Low-Rank (LR) matrix approximation and a pruning based approach to compute a sparse solution. In particular, the pruning algorithm is considered to compute off-line a sparse solution of Lagrangian multipliers and then speed up the testing stage, whereas the LR matrix approximation allows to speed up the training stage. The proposed approach has been tested by identifying a subsystem of a vehicle powertrain model by the input/output data collected from the simulation model. The proposed approach has been compared with respect to the standard approach based on LS-SVM. The methods are tested on the considered real-world problem and the proposed approach permits to reduce the execution time of about 77% on average in the considered identification problem, corresponding to a degradation of the identification result less than 0.2% with respect to the standard solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon MOSFETs Evaluation in Auxiliary DC-DC Converters for HEV/EV Applications LiDAR - Stereo Camera Fusion for Accurate Depth Estimation Design and Modeling of an Interleaving Boost Converter with Quasi-Saturated Inductors for Electric Vehicles Review on Electric Vehicles Exterior Noise Generation and Evaluation The "first and euRopEAn siC eighT Inches pilOt liNe": a project, called REACTION, that will boost key SiC Technologies upgrading (developments) in Europe, unleashing Applications in the Automotive Power Electronics Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1