基于力学模型的滚动平衡板人体平衡反应时间估计

Csenge A. Molnar, T. Insperger
{"title":"基于力学模型的滚动平衡板人体平衡反应时间估计","authors":"Csenge A. Molnar, T. Insperger","doi":"10.1115/detc2020-22407","DOIUrl":null,"url":null,"abstract":"\n Human balancing on rolling balance board in the sagittal plane is analyzed such that the geometry of the balance board can be adjusted: the radius R of the wheels and the elevation h between the top of the wheels and the board can be changed. These two parameters have a significant influence on the stability of standing on the board as shown by preliminary experiments. The human body was modeled by a single inverted pendulum, while the balance board was considered by the geometry of the mechanical model. Based on literature, it was assumed that the central nervous system (CNS) controls by signals proportional to the angle and angular velocity of the human body and the balance board and is able to tune the feedback gains with 40% accuracy during the balancing process. To take the reaction time into consideration, operation of the CNS was modeled as a delayed proportional-derivative feedback. The critical time delay for the stabilization process is defined such that if the delay is larger than the critical one then no control gains could stabilize the system. Four balance board configurations were chosen with different wheel radius and the corresponding critical time delays were computed based on the mechanical model. Eight young healthy individuals participated in the experiments. Their task was to perform 60 s long balancing trials on each balance board. The reaction time of the participants was estimated by comparing the numerical results obtained for the critical time delay and their successful and unsuccessful balancing trials. The reaction times were found to be in the range of 0.10–0.15 s which are in good agreement with the literature.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Reaction Time During Human Balancing on Rolling Balance Board Based on Mechanical Models\",\"authors\":\"Csenge A. Molnar, T. Insperger\",\"doi\":\"10.1115/detc2020-22407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Human balancing on rolling balance board in the sagittal plane is analyzed such that the geometry of the balance board can be adjusted: the radius R of the wheels and the elevation h between the top of the wheels and the board can be changed. These two parameters have a significant influence on the stability of standing on the board as shown by preliminary experiments. The human body was modeled by a single inverted pendulum, while the balance board was considered by the geometry of the mechanical model. Based on literature, it was assumed that the central nervous system (CNS) controls by signals proportional to the angle and angular velocity of the human body and the balance board and is able to tune the feedback gains with 40% accuracy during the balancing process. To take the reaction time into consideration, operation of the CNS was modeled as a delayed proportional-derivative feedback. The critical time delay for the stabilization process is defined such that if the delay is larger than the critical one then no control gains could stabilize the system. Four balance board configurations were chosen with different wheel radius and the corresponding critical time delays were computed based on the mechanical model. Eight young healthy individuals participated in the experiments. Their task was to perform 60 s long balancing trials on each balance board. The reaction time of the participants was estimated by comparing the numerical results obtained for the critical time delay and their successful and unsuccessful balancing trials. The reaction times were found to be in the range of 0.10–0.15 s which are in good agreement with the literature.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析了人体在矢状面滚动平衡板上的平衡,通过调整平衡板的几何形状,可以改变车轮的半径R和车轮顶部与平衡板之间的高度h。初步实验表明,这两个参数对板上站立的稳定性有显著影响。人体是由一个倒立摆来建模的,而平衡板是由力学模型的几何来考虑的。根据文献,假设中枢神经系统(CNS)通过与人体和平衡板的角度和角速度成正比的信号进行控制,并且能够在平衡过程中以40%的精度调整反馈增益。考虑到反应时间,将CNS的运行建模为延迟比例导数反馈。定义了镇定过程的临界时滞,当时滞大于临界时滞时,任何控制增益都不能使系统稳定。在力学模型的基础上,选择了不同车轮半径的四种平衡板构型,计算了相应的临界时滞。8名健康的年轻人参加了实验。他们的任务是在每块平衡板上做60秒长的平衡试验。通过比较临界时间延迟和平衡试验成功和不成功的数值结果来估计被试的反应时间。反应时间在0.10 ~ 0.15 s之间,与文献吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Reaction Time During Human Balancing on Rolling Balance Board Based on Mechanical Models
Human balancing on rolling balance board in the sagittal plane is analyzed such that the geometry of the balance board can be adjusted: the radius R of the wheels and the elevation h between the top of the wheels and the board can be changed. These two parameters have a significant influence on the stability of standing on the board as shown by preliminary experiments. The human body was modeled by a single inverted pendulum, while the balance board was considered by the geometry of the mechanical model. Based on literature, it was assumed that the central nervous system (CNS) controls by signals proportional to the angle and angular velocity of the human body and the balance board and is able to tune the feedback gains with 40% accuracy during the balancing process. To take the reaction time into consideration, operation of the CNS was modeled as a delayed proportional-derivative feedback. The critical time delay for the stabilization process is defined such that if the delay is larger than the critical one then no control gains could stabilize the system. Four balance board configurations were chosen with different wheel radius and the corresponding critical time delays were computed based on the mechanical model. Eight young healthy individuals participated in the experiments. Their task was to perform 60 s long balancing trials on each balance board. The reaction time of the participants was estimated by comparing the numerical results obtained for the critical time delay and their successful and unsuccessful balancing trials. The reaction times were found to be in the range of 0.10–0.15 s which are in good agreement with the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynManto: A Matlab Toolbox for the Simulation and Analysis of Multibody Systems Experimental Study of Mullins Effect in Natural Rubber for Different Stretch Conditions A Non-Prismatic Beam Element for the Optimization of Flexure Mechanisms Towards Data-Driven Modeling of Pathological Tremors Deep Learning of (Periodic) Minimal Coordinates for Multibody Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1