为SPARQL图形引擎编写数据并行代码

Vito Giovanni Castellana, Antonino Tumeo, Oreste Villa, D. Haglin, J. Feo
{"title":"为SPARQL图形引擎编写数据并行代码","authors":"Vito Giovanni Castellana, Antonino Tumeo, Oreste Villa, D. Haglin, J. Feo","doi":"10.1109/SocialCom.2013.104","DOIUrl":null,"url":null,"abstract":"The emergence of petascale triple stores have motivated the investigation of alternates to traditional table-based relational methods. Since triple stores represent data as structured tuples, graphs are a natural data structure for encoding their information. The use of graph data structures, rather than tables, requires us to rethink the methods used to process queries on the store. We are developing a scalable, in-memory SPARQL graph engine that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods, and a custom multithreaded runtime layer for multinode commodity systems. Rather than transforming SPARQL queries into a series of select and join operations on tables, our front end compiles the queries into data parallel C code with calls to graph methods that walk internal data structures, constructing answers in their wake. In this paper, we describe the compilation process and give examples of the generated C code parallelized with OpenMP. We present performance numbers for the SP2Bench SPARQL benchmark queries on a 48-core shared-memory system. With respect to conventional relational database systems such as Virtuoso, our approach uses less memory and provides higher performance.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Composing Data Parallel Code for a SPARQL Graph Engine\",\"authors\":\"Vito Giovanni Castellana, Antonino Tumeo, Oreste Villa, D. Haglin, J. Feo\",\"doi\":\"10.1109/SocialCom.2013.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of petascale triple stores have motivated the investigation of alternates to traditional table-based relational methods. Since triple stores represent data as structured tuples, graphs are a natural data structure for encoding their information. The use of graph data structures, rather than tables, requires us to rethink the methods used to process queries on the store. We are developing a scalable, in-memory SPARQL graph engine that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods, and a custom multithreaded runtime layer for multinode commodity systems. Rather than transforming SPARQL queries into a series of select and join operations on tables, our front end compiles the queries into data parallel C code with calls to graph methods that walk internal data structures, constructing answers in their wake. In this paper, we describe the compilation process and give examples of the generated C code parallelized with OpenMP. We present performance numbers for the SP2Bench SPARQL benchmark queries on a 48-core shared-memory system. With respect to conventional relational database systems such as Virtuoso, our approach uses less memory and provides higher performance.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

千兆级三重存储的出现激发了对传统基于表的关系方法的替代研究。由于三重存储将数据表示为结构化元组,因此图是编码其信息的自然数据结构。使用图形数据结构而不是表,需要我们重新考虑用于处理存储查询的方法。我们正在开发一个可扩展的、内存中的SPARQL图引擎,它可以扩展到数百个节点,同时保持恒定的查询吞吐量。我们的框架包括一个SPARQL到数据并行的C编译器、一个并行图方法库和一个用于多节点商品系统的定制多线程运行时层。我们的前端并没有将SPARQL查询转换为一系列表上的选择和连接操作,而是将查询编译为数据并行的C代码,并调用图形方法来遍历内部数据结构,并在其后构造答案。在本文中,我们描述了编译过程,并给出了与OpenMP并行生成的C代码的示例。我们给出了在48核共享内存系统上SP2Bench SPARQL基准查询的性能数字。与传统的关系数据库系统(如Virtuoso)相比,我们的方法使用更少的内存并提供更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composing Data Parallel Code for a SPARQL Graph Engine
The emergence of petascale triple stores have motivated the investigation of alternates to traditional table-based relational methods. Since triple stores represent data as structured tuples, graphs are a natural data structure for encoding their information. The use of graph data structures, rather than tables, requires us to rethink the methods used to process queries on the store. We are developing a scalable, in-memory SPARQL graph engine that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods, and a custom multithreaded runtime layer for multinode commodity systems. Rather than transforming SPARQL queries into a series of select and join operations on tables, our front end compiles the queries into data parallel C code with calls to graph methods that walk internal data structures, constructing answers in their wake. In this paper, we describe the compilation process and give examples of the generated C code parallelized with OpenMP. We present performance numbers for the SP2Bench SPARQL benchmark queries on a 48-core shared-memory system. With respect to conventional relational database systems such as Virtuoso, our approach uses less memory and provides higher performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group Recommendation Algorithm with Collaborative Filtering Access Control Policy Extraction from Unconstrained Natural Language Text Stock Market Manipulation Using Cyberattacks Together with Misinformation Disseminated through Social Media Friendship Prediction on Social Network Users An Empirical Comparison of Graph Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1