采用网页搜索查询点击日志进行多域口语理解

Dilek Z. Hakkani-Tür, Gökhan Tür, Larry Heck, Asli Celikyilmaz, Ashley Fidler, D. Hillard, R. Iyer, S. Parthasarathy
{"title":"采用网页搜索查询点击日志进行多域口语理解","authors":"Dilek Z. Hakkani-Tür, Gökhan Tür, Larry Heck, Asli Celikyilmaz, Ashley Fidler, D. Hillard, R. Iyer, S. Parthasarathy","doi":"10.1109/ASRU.2011.6163968","DOIUrl":null,"url":null,"abstract":"Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. In this work, we propose to enrich the existing classification feature set for domain detection with features computed using the click distribution over a set of clicked URLs from search query click logs (QCLs) of user utterances. Since the form of natural language utterances differs stylistically from that of keyword search queries, to be able to match natural language utterances with related search queries, we perform a syntax-based transformation of the original utterances, after filtering out domain-independent salient phrases. This approach results in significant improvements for domain detection, especially when detecting the domains of web-related user utterances.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Employing web search query click logs for multi-domain spoken language understanding\",\"authors\":\"Dilek Z. Hakkani-Tür, Gökhan Tür, Larry Heck, Asli Celikyilmaz, Ashley Fidler, D. Hillard, R. Iyer, S. Parthasarathy\",\"doi\":\"10.1109/ASRU.2011.6163968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. In this work, we propose to enrich the existing classification feature set for domain detection with features computed using the click distribution over a set of clicked URLs from search query click logs (QCLs) of user utterances. Since the form of natural language utterances differs stylistically from that of keyword search queries, to be able to match natural language utterances with related search queries, we perform a syntax-based transformation of the original utterances, after filtering out domain-independent salient phrases. This approach results in significant improvements for domain detection, especially when detecting the domains of web-related user utterances.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

来自搜索引擎(如Bing或Google)的用户查询日志以及点击的链接提供了有价值的隐式反馈,以改进统计口语理解(SLU)模型。在这项工作中,我们提出利用用户话语的搜索查询点击日志(QCLs)中一组被点击的url上的点击分布计算的特征来丰富现有的分类特征集,用于域检测。由于自然语言话语的形式与关键词搜索查询的形式在风格上有所不同,为了能够将自然语言话语与相关搜索查询匹配,我们在过滤掉与领域无关的显著短语后,对原始话语进行基于语法的转换。这种方法显著改善了领域检测,特别是在检测与网络相关的用户话语的领域时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Employing web search query click logs for multi-domain spoken language understanding
Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. In this work, we propose to enrich the existing classification feature set for domain detection with features computed using the click distribution over a set of clicked URLs from search query click logs (QCLs) of user utterances. Since the form of natural language utterances differs stylistically from that of keyword search queries, to be able to match natural language utterances with related search queries, we perform a syntax-based transformation of the original utterances, after filtering out domain-independent salient phrases. This approach results in significant improvements for domain detection, especially when detecting the domains of web-related user utterances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1