基于小时分辨率的日前天然气需求预测

I. Panapakidis, Vasileios Polychronidis, D. Bargiotas
{"title":"基于小时分辨率的日前天然气需求预测","authors":"I. Panapakidis, Vasileios Polychronidis, D. Bargiotas","doi":"10.1109/UPEC50034.2021.9548273","DOIUrl":null,"url":null,"abstract":"Natural Gas (NG) demand forecasting is a research topic that starts to gather the attention of scholars, research institutions, utilities, retailers and other interested parties. Accurate predictions of future needs for NG can aid on the optimal management of NG resources. This manuscript examines the problem of day-ahead Natural Gas (NG) demand forecasting in hourly resolution. Various models of different type are trained and applied using data that correspond to the demand of a large region including urban, sub-urban and industrial loads. A series of scenarios are formed in order to investigate the influence of input selection on the day-ahead forecasting problem.","PeriodicalId":325389,"journal":{"name":"2021 56th International Universities Power Engineering Conference (UPEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Day-Ahead Natural Gas Demand Forecasting in Hourly Resolution\",\"authors\":\"I. Panapakidis, Vasileios Polychronidis, D. Bargiotas\",\"doi\":\"10.1109/UPEC50034.2021.9548273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Gas (NG) demand forecasting is a research topic that starts to gather the attention of scholars, research institutions, utilities, retailers and other interested parties. Accurate predictions of future needs for NG can aid on the optimal management of NG resources. This manuscript examines the problem of day-ahead Natural Gas (NG) demand forecasting in hourly resolution. Various models of different type are trained and applied using data that correspond to the demand of a large region including urban, sub-urban and industrial loads. A series of scenarios are formed in order to investigate the influence of input selection on the day-ahead forecasting problem.\",\"PeriodicalId\":325389,\"journal\":{\"name\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 56th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC50034.2021.9548273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC50034.2021.9548273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天然气需求预测是一个备受学者、研究机构、公用事业公司、零售商和其他相关方关注的研究课题。准确预测未来对天然气的需求有助于天然气资源的优化管理。本文研究了以小时分辨率预测天然气需求的问题。各种不同类型的模型被训练和应用,使用的数据对应于一个大区域的需求,包括城市、郊区和工业负荷。为了研究输入选择对日前预测问题的影响,形成了一系列的情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Day-Ahead Natural Gas Demand Forecasting in Hourly Resolution
Natural Gas (NG) demand forecasting is a research topic that starts to gather the attention of scholars, research institutions, utilities, retailers and other interested parties. Accurate predictions of future needs for NG can aid on the optimal management of NG resources. This manuscript examines the problem of day-ahead Natural Gas (NG) demand forecasting in hourly resolution. Various models of different type are trained and applied using data that correspond to the demand of a large region including urban, sub-urban and industrial loads. A series of scenarios are formed in order to investigate the influence of input selection on the day-ahead forecasting problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of Methods to Measure Power System Flexibility: A Review Novel DPWM Modulation Scheme for Three-Phase ZVS Inverters Optimizing the turbines distribution in wind farms based on mutual minimization of the wake effect Modified Grid-forming Converter Control for Black-Start and Grid-Synchronization Applications Novel Hybrid Invasive Weed Optimization and Machine Learning Approach for Fault Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1