LVQ网络学习率的自动估计

V. Muralidharan, H. Lui
{"title":"LVQ网络学习率的自动估计","authors":"V. Muralidharan, H. Lui","doi":"10.1109/ICCS.1992.254894","DOIUrl":null,"url":null,"abstract":"Various learning vector quantization (LVQ) algorithms proposed before have made use of the learning coefficient alpha (t) for obtaining convergence of training. The authors present a new method that can be to estimate the learning rate at alpha (t) from the input and codebook vectors directly and independent of the past history of alpha (t). The results of experiments done with real speech data with the algorithm are also reported.<<ETX>>","PeriodicalId":223769,"journal":{"name":"[Proceedings] Singapore ICCS/ISITA `92","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic estimation of learning rate for LVQ networks\",\"authors\":\"V. Muralidharan, H. Lui\",\"doi\":\"10.1109/ICCS.1992.254894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various learning vector quantization (LVQ) algorithms proposed before have made use of the learning coefficient alpha (t) for obtaining convergence of training. The authors present a new method that can be to estimate the learning rate at alpha (t) from the input and codebook vectors directly and independent of the past history of alpha (t). The results of experiments done with real speech data with the algorithm are also reported.<<ETX>>\",\"PeriodicalId\":223769,\"journal\":{\"name\":\"[Proceedings] Singapore ICCS/ISITA `92\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Singapore ICCS/ISITA `92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS.1992.254894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Singapore ICCS/ISITA `92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS.1992.254894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

之前提出的各种学习向量量化(LVQ)算法都是利用学习系数alpha (t)来获得训练的收敛性。作者提出了一种新的方法,可以直接从输入和码本向量中估计α (t)的学习率,而不依赖于α (t)的过去历史。本文还报道了用该算法对真实语音数据进行的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic estimation of learning rate for LVQ networks
Various learning vector quantization (LVQ) algorithms proposed before have made use of the learning coefficient alpha (t) for obtaining convergence of training. The authors present a new method that can be to estimate the learning rate at alpha (t) from the input and codebook vectors directly and independent of the past history of alpha (t). The results of experiments done with real speech data with the algorithm are also reported.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of interconnected LANS with server/client configuration An enhanced approach to character recognition by Fourier descriptor A new error control techinque for the parallel combinatory spread spectrum communication system Pattern recognition using optical binary perceptron Fast VQ algorithm using scalar prequantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1