我们可以进行定量内容分析

Johannes Brunzel
{"title":"我们可以进行定量内容分析","authors":"Johannes Brunzel","doi":"10.15358/0340-1650-2021-2-3-17","DOIUrl":null,"url":null,"abstract":"Der Beitrag erläutert, inwiefern die Methode der quantitativen Textanalyse ein wesentliches Mittel zur betriebswirtschaftlichen Effizienzsteigerung sein kann. Dabei geht der Artikel über die Nennung von Chancen und Risiken des Einsatzes von künstlicher Intelligenz/Big Data-Analysen hinaus, indem der Beitrag praxisorientiert wichtige Entwicklungen im Bereich der quantitativen Inhaltsanalyse aus der wirtschaftswissenschaftlichen Literatur herleitet. Nachfolgend unterteilt der Artikel die wichtigsten Schritte zur Implementierung in (1) Datenerhebung von quantitativen Textdaten, (2) Durchführung der generischen Textanalyse und (3) Durchführung des Natural Language Processing. Als ein Hauptergebnis hält der Artikel fest, dass Natural Language Processing-Ansätze zwar weiterführende und komplexere Einsichten bieten, jedoch das Potenzial generischer Textanalyse - aufgrund der Flexibilität und verhältnismäßig einfachen Anwendbarkeit im Unternehmenskontext - noch nicht ausgeschöpft ist. Zudem stehen Führungskräfte vor der dichotomen Entscheidung, ob programmierbasierte oder kommerzielle Lösungen für die Durchführung der Textanalyse relevant sind.","PeriodicalId":382751,"journal":{"name":"WiSt - Wirtschaftswissenschaftliches Studium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ansätze zur quantitativen Inhaltsanalyse\",\"authors\":\"Johannes Brunzel\",\"doi\":\"10.15358/0340-1650-2021-2-3-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Der Beitrag erläutert, inwiefern die Methode der quantitativen Textanalyse ein wesentliches Mittel zur betriebswirtschaftlichen Effizienzsteigerung sein kann. Dabei geht der Artikel über die Nennung von Chancen und Risiken des Einsatzes von künstlicher Intelligenz/Big Data-Analysen hinaus, indem der Beitrag praxisorientiert wichtige Entwicklungen im Bereich der quantitativen Inhaltsanalyse aus der wirtschaftswissenschaftlichen Literatur herleitet. Nachfolgend unterteilt der Artikel die wichtigsten Schritte zur Implementierung in (1) Datenerhebung von quantitativen Textdaten, (2) Durchführung der generischen Textanalyse und (3) Durchführung des Natural Language Processing. Als ein Hauptergebnis hält der Artikel fest, dass Natural Language Processing-Ansätze zwar weiterführende und komplexere Einsichten bieten, jedoch das Potenzial generischer Textanalyse - aufgrund der Flexibilität und verhältnismäßig einfachen Anwendbarkeit im Unternehmenskontext - noch nicht ausgeschöpft ist. Zudem stehen Führungskräfte vor der dichotomen Entscheidung, ob programmierbasierte oder kommerzielle Lösungen für die Durchführung der Textanalyse relevant sind.\",\"PeriodicalId\":382751,\"journal\":{\"name\":\"WiSt - Wirtschaftswissenschaftliches Studium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WiSt - Wirtschaftswissenschaftliches Studium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15358/0340-1650-2021-2-3-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WiSt - Wirtschaftswissenschaftliches Studium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15358/0340-1650-2021-2-3-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章解释了微观应用的术语分析方法如何可以成为微观应用效率的关键工具。这篇文章不仅阐述了人工智慧/大数据分析的机会和风险,还从经济学文献中引证了具有实践意义的重要内容分析发展。以下文章。作为结果的主要结果,文章写道,虽然自然进程能提供更广泛和更复杂的理解,但常规文本分析的潜力仍在。这是因为其弹性和相对简单的公司背景。此外,领导者还面临双领袖决定应用于文本分析的程序或商业方案是否相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ansätze zur quantitativen Inhaltsanalyse
Der Beitrag erläutert, inwiefern die Methode der quantitativen Textanalyse ein wesentliches Mittel zur betriebswirtschaftlichen Effizienzsteigerung sein kann. Dabei geht der Artikel über die Nennung von Chancen und Risiken des Einsatzes von künstlicher Intelligenz/Big Data-Analysen hinaus, indem der Beitrag praxisorientiert wichtige Entwicklungen im Bereich der quantitativen Inhaltsanalyse aus der wirtschaftswissenschaftlichen Literatur herleitet. Nachfolgend unterteilt der Artikel die wichtigsten Schritte zur Implementierung in (1) Datenerhebung von quantitativen Textdaten, (2) Durchführung der generischen Textanalyse und (3) Durchführung des Natural Language Processing. Als ein Hauptergebnis hält der Artikel fest, dass Natural Language Processing-Ansätze zwar weiterführende und komplexere Einsichten bieten, jedoch das Potenzial generischer Textanalyse - aufgrund der Flexibilität und verhältnismäßig einfachen Anwendbarkeit im Unternehmenskontext - noch nicht ausgeschöpft ist. Zudem stehen Führungskräfte vor der dichotomen Entscheidung, ob programmierbasierte oder kommerzielle Lösungen für die Durchführung der Textanalyse relevant sind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logistik 4.0 Das WiSt-Jubiläumsfragespiel: 19 aus 71 EU-Klimapolitik nach Corona-Krise weiter gefordert Agentenbasierte Modelle in den Wirtschaftswissenschaften Die wichtigsten Export- und Importgüter in Deutschland im Jahr 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1