{"title":"我们可以进行定量内容分析","authors":"Johannes Brunzel","doi":"10.15358/0340-1650-2021-2-3-17","DOIUrl":null,"url":null,"abstract":"Der Beitrag erläutert, inwiefern die Methode der quantitativen Textanalyse ein wesentliches Mittel zur betriebswirtschaftlichen Effizienzsteigerung sein kann. Dabei geht der Artikel über die Nennung von Chancen und Risiken des Einsatzes von künstlicher Intelligenz/Big Data-Analysen hinaus, indem der Beitrag praxisorientiert wichtige Entwicklungen im Bereich der quantitativen Inhaltsanalyse aus der wirtschaftswissenschaftlichen Literatur herleitet. Nachfolgend unterteilt der Artikel die wichtigsten Schritte zur Implementierung in (1) Datenerhebung von quantitativen Textdaten, (2) Durchführung der generischen Textanalyse und (3) Durchführung des Natural Language Processing. Als ein Hauptergebnis hält der Artikel fest, dass Natural Language Processing-Ansätze zwar weiterführende und komplexere Einsichten bieten, jedoch das Potenzial generischer Textanalyse - aufgrund der Flexibilität und verhältnismäßig einfachen Anwendbarkeit im Unternehmenskontext - noch nicht ausgeschöpft ist. Zudem stehen Führungskräfte vor der dichotomen Entscheidung, ob programmierbasierte oder kommerzielle Lösungen für die Durchführung der Textanalyse relevant sind.","PeriodicalId":382751,"journal":{"name":"WiSt - Wirtschaftswissenschaftliches Studium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ansätze zur quantitativen Inhaltsanalyse\",\"authors\":\"Johannes Brunzel\",\"doi\":\"10.15358/0340-1650-2021-2-3-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Der Beitrag erläutert, inwiefern die Methode der quantitativen Textanalyse ein wesentliches Mittel zur betriebswirtschaftlichen Effizienzsteigerung sein kann. Dabei geht der Artikel über die Nennung von Chancen und Risiken des Einsatzes von künstlicher Intelligenz/Big Data-Analysen hinaus, indem der Beitrag praxisorientiert wichtige Entwicklungen im Bereich der quantitativen Inhaltsanalyse aus der wirtschaftswissenschaftlichen Literatur herleitet. Nachfolgend unterteilt der Artikel die wichtigsten Schritte zur Implementierung in (1) Datenerhebung von quantitativen Textdaten, (2) Durchführung der generischen Textanalyse und (3) Durchführung des Natural Language Processing. Als ein Hauptergebnis hält der Artikel fest, dass Natural Language Processing-Ansätze zwar weiterführende und komplexere Einsichten bieten, jedoch das Potenzial generischer Textanalyse - aufgrund der Flexibilität und verhältnismäßig einfachen Anwendbarkeit im Unternehmenskontext - noch nicht ausgeschöpft ist. Zudem stehen Führungskräfte vor der dichotomen Entscheidung, ob programmierbasierte oder kommerzielle Lösungen für die Durchführung der Textanalyse relevant sind.\",\"PeriodicalId\":382751,\"journal\":{\"name\":\"WiSt - Wirtschaftswissenschaftliches Studium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WiSt - Wirtschaftswissenschaftliches Studium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15358/0340-1650-2021-2-3-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WiSt - Wirtschaftswissenschaftliches Studium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15358/0340-1650-2021-2-3-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Der Beitrag erläutert, inwiefern die Methode der quantitativen Textanalyse ein wesentliches Mittel zur betriebswirtschaftlichen Effizienzsteigerung sein kann. Dabei geht der Artikel über die Nennung von Chancen und Risiken des Einsatzes von künstlicher Intelligenz/Big Data-Analysen hinaus, indem der Beitrag praxisorientiert wichtige Entwicklungen im Bereich der quantitativen Inhaltsanalyse aus der wirtschaftswissenschaftlichen Literatur herleitet. Nachfolgend unterteilt der Artikel die wichtigsten Schritte zur Implementierung in (1) Datenerhebung von quantitativen Textdaten, (2) Durchführung der generischen Textanalyse und (3) Durchführung des Natural Language Processing. Als ein Hauptergebnis hält der Artikel fest, dass Natural Language Processing-Ansätze zwar weiterführende und komplexere Einsichten bieten, jedoch das Potenzial generischer Textanalyse - aufgrund der Flexibilität und verhältnismäßig einfachen Anwendbarkeit im Unternehmenskontext - noch nicht ausgeschöpft ist. Zudem stehen Führungskräfte vor der dichotomen Entscheidung, ob programmierbasierte oder kommerzielle Lösungen für die Durchführung der Textanalyse relevant sind.