基于双功能GaN发光二极管的自调节光源

Yumeng Luo, Jiahao Yin, Kwai Hei Li
{"title":"基于双功能GaN发光二极管的自调节光源","authors":"Yumeng Luo, Jiahao Yin, Kwai Hei Li","doi":"10.1109/OGC55558.2022.10050974","DOIUrl":null,"url":null,"abstract":"GaN light-emitting diodes (LED) play a vital role in modern lighting technology, and the further development of smart lighting systems capable of automatically adjusting the brightness has received extensive attention. Herein, we present a simple and elegant approach based on a single GaN LED that can self-adjust the output intensity in response to the changes in ambient intensity. The GaN LED with InGaN/GaN multi-quantum wells can operate in both luminescence and photodetection modes, and its electrical and optical performances are thoroughly investigated. Driven by a microcontroller board under pulse-width modulation, the device acts as a detector to provide photocurrent signals that reflect the ambient light intensity at the off state, and provides the desired intensity level at the on state. This work also exhibits a proof-of-concept demonstration of real-time stabilization of blue and white light irradiances at target areas despite large variations in ambient irradiance. The proposed novel self-adjusting scheme based on a dual-function LED chip without the need for external photosensors can be an alternative approach for smart lighting applications.","PeriodicalId":177155,"journal":{"name":"2022 IEEE 7th Optoelectronics Global Conference (OGC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-adjusting Light Source Based on a Dual-Function GaN Light-Emitting Diode\",\"authors\":\"Yumeng Luo, Jiahao Yin, Kwai Hei Li\",\"doi\":\"10.1109/OGC55558.2022.10050974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaN light-emitting diodes (LED) play a vital role in modern lighting technology, and the further development of smart lighting systems capable of automatically adjusting the brightness has received extensive attention. Herein, we present a simple and elegant approach based on a single GaN LED that can self-adjust the output intensity in response to the changes in ambient intensity. The GaN LED with InGaN/GaN multi-quantum wells can operate in both luminescence and photodetection modes, and its electrical and optical performances are thoroughly investigated. Driven by a microcontroller board under pulse-width modulation, the device acts as a detector to provide photocurrent signals that reflect the ambient light intensity at the off state, and provides the desired intensity level at the on state. This work also exhibits a proof-of-concept demonstration of real-time stabilization of blue and white light irradiances at target areas despite large variations in ambient irradiance. The proposed novel self-adjusting scheme based on a dual-function LED chip without the need for external photosensors can be an alternative approach for smart lighting applications.\",\"PeriodicalId\":177155,\"journal\":{\"name\":\"2022 IEEE 7th Optoelectronics Global Conference (OGC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 7th Optoelectronics Global Conference (OGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OGC55558.2022.10050974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th Optoelectronics Global Conference (OGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OGC55558.2022.10050974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氮化镓发光二极管(LED)在现代照明技术中发挥着至关重要的作用,能够自动调节亮度的智能照明系统的进一步发展受到了广泛的关注。在此,我们提出了一种基于单个GaN LED的简单而优雅的方法,该方法可以根据环境强度的变化自调节输出强度。具有InGaN/GaN多量子阱的GaN LED可以在发光和光探测模式下工作,并对其电学和光学性能进行了深入的研究。该器件由微控制器板在脉宽调制下驱动,作为检测器提供光电流信号,在关闭状态下反射环境光强度,并在打开状态下提供所需的强度水平。这项工作还展示了尽管环境辐照度变化很大,但目标区域蓝白光辐照度的实时稳定的概念验证演示。提出的基于双功能LED芯片的新型自调节方案无需外部光传感器,可以成为智能照明应用的另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-adjusting Light Source Based on a Dual-Function GaN Light-Emitting Diode
GaN light-emitting diodes (LED) play a vital role in modern lighting technology, and the further development of smart lighting systems capable of automatically adjusting the brightness has received extensive attention. Herein, we present a simple and elegant approach based on a single GaN LED that can self-adjust the output intensity in response to the changes in ambient intensity. The GaN LED with InGaN/GaN multi-quantum wells can operate in both luminescence and photodetection modes, and its electrical and optical performances are thoroughly investigated. Driven by a microcontroller board under pulse-width modulation, the device acts as a detector to provide photocurrent signals that reflect the ambient light intensity at the off state, and provides the desired intensity level at the on state. This work also exhibits a proof-of-concept demonstration of real-time stabilization of blue and white light irradiances at target areas despite large variations in ambient irradiance. The proposed novel self-adjusting scheme based on a dual-function LED chip without the need for external photosensors can be an alternative approach for smart lighting applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Resolution Microwave Frequency Measurement Based on Optical Frequency Comb and Image Rejection Photonics Channelized Receiver Characterization of Various Bound State Solitons Using Linear Optical Sampling Technique Modeling and Analysis of Zinc Diffusion Effect within InP-Based Mach-Zehnder Modulators Self-Supervised Denoising of single OCT image with Self2Self-OCT Network ErYb Co-doped Double-clad Fiber Amplifiers with Average Gain of 29dB by High Concentration Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1