硅晶格中过渡族元素与硫相互作用过程中的杂质态

Sh. I. Askarov, Sharipov Bashirulla, Srazhev Solizhon, Toshboev Tuchi, Salieva Shokhista
{"title":"硅晶格中过渡族元素与硫相互作用过程中的杂质态","authors":"Sh. I. Askarov, Sharipov Bashirulla, Srazhev Solizhon, Toshboev Tuchi, Salieva Shokhista","doi":"10.11648/J.AJPA.20180603.12","DOIUrl":null,"url":null,"abstract":"On the basis of comparative analysis of electrical properties of silicon doped with sulfur and nickel respectively at temperature range of 1000-1250°C in 50°C increments and after their subsequent thermal annealing at temperature range of 400-950°C together with control samples of silicon doped with sulfur and nickel, it was revealed that impurity centers of sulfur and nickel do not interact with each other in the matrix of silicon. The absence of such interaction is possibly due to the fact that the electronic configuration of the impurity centers of nickel in the crystal lattice of silicon turns out to be in the filled 3d 1 0 state, which gives it the character of an inert gas. In view of the absence of interaction of sulfur and nickel in silicon, it is concluded that electrically neutral chemically bound complexes in silicon are formed between sulfur substitution centers and centers of transition metal atoms.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impurity State of Transition Group Elements in the Silicon Lattice in the Process of Their Interaction with Sulfur\",\"authors\":\"Sh. I. Askarov, Sharipov Bashirulla, Srazhev Solizhon, Toshboev Tuchi, Salieva Shokhista\",\"doi\":\"10.11648/J.AJPA.20180603.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of comparative analysis of electrical properties of silicon doped with sulfur and nickel respectively at temperature range of 1000-1250°C in 50°C increments and after their subsequent thermal annealing at temperature range of 400-950°C together with control samples of silicon doped with sulfur and nickel, it was revealed that impurity centers of sulfur and nickel do not interact with each other in the matrix of silicon. The absence of such interaction is possibly due to the fact that the electronic configuration of the impurity centers of nickel in the crystal lattice of silicon turns out to be in the filled 3d 1 0 state, which gives it the character of an inert gas. In view of the absence of interaction of sulfur and nickel in silicon, it is concluded that electrically neutral chemically bound complexes in silicon are formed between sulfur substitution centers and centers of transition metal atoms.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20180603.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20180603.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过对比分析分别掺硫硅和镍硅在1000 ~ 1250℃温度范围内50℃增量和400 ~ 950℃温度范围内退火后的电学性能,发现在硅基体中,硫和镍的杂质中心不相互作用。这种相互作用的不存在可能是由于镍在硅晶格中的杂质中心的电子排布处于填充的3d - 10态,这使其具有惰性气体的性质。由于硅中没有硫与镍的相互作用,因此硅中的电中性化学键合配合物是在硫取代中心与过渡金属原子中心之间形成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impurity State of Transition Group Elements in the Silicon Lattice in the Process of Their Interaction with Sulfur
On the basis of comparative analysis of electrical properties of silicon doped with sulfur and nickel respectively at temperature range of 1000-1250°C in 50°C increments and after their subsequent thermal annealing at temperature range of 400-950°C together with control samples of silicon doped with sulfur and nickel, it was revealed that impurity centers of sulfur and nickel do not interact with each other in the matrix of silicon. The absence of such interaction is possibly due to the fact that the electronic configuration of the impurity centers of nickel in the crystal lattice of silicon turns out to be in the filled 3d 1 0 state, which gives it the character of an inert gas. In view of the absence of interaction of sulfur and nickel in silicon, it is concluded that electrically neutral chemically bound complexes in silicon are formed between sulfur substitution centers and centers of transition metal atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of High Gain Single Stage Telescopic Cmos Operational Amplifier Evaluation of the Risk Associated with Drinkable Water Sources Through Analysis of Gross Alpha and Beta Radioactivity Levels in Chosen Locations, Mubi – North Heat Transfer Behavior of a PTC Receiver Tube Using Transversal Focal Inserts and CFD Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides An Energy Criterion for Rheological Failure of Rock and Application in Stability Analysis of Natural High Slope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1