绿色云计算任务调度算法的改进

Zhong Zong
{"title":"绿色云计算任务调度算法的改进","authors":"Zhong Zong","doi":"10.1109/ICCSE49874.2020.9201785","DOIUrl":null,"url":null,"abstract":"The energy consumption generated by servers in task scheduling is an important part of the dynamic energy consumption of cloud computing systems. Saving energy and improving energy efficiency are important foundations for realizing green cloud computing systems. Under green cloud computing, this paper aims to reduce energy consumption and shorten task execution time. This paper combines genetic algorithm and ant colony algorithm to propose a dynamic fusion task-scheduling algorithm. Thereby reducing the energy consumption of cloud computing data centers and computing centers. The simulation results show that the proposed task scheduling algorithm can significantly reduce the time and total energy consumption of cloud computing system tasks.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Improvement of Task Scheduling Algorithms for Green Cloud Computing\",\"authors\":\"Zhong Zong\",\"doi\":\"10.1109/ICCSE49874.2020.9201785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy consumption generated by servers in task scheduling is an important part of the dynamic energy consumption of cloud computing systems. Saving energy and improving energy efficiency are important foundations for realizing green cloud computing systems. Under green cloud computing, this paper aims to reduce energy consumption and shorten task execution time. This paper combines genetic algorithm and ant colony algorithm to propose a dynamic fusion task-scheduling algorithm. Thereby reducing the energy consumption of cloud computing data centers and computing centers. The simulation results show that the proposed task scheduling algorithm can significantly reduce the time and total energy consumption of cloud computing system tasks.\",\"PeriodicalId\":350703,\"journal\":{\"name\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE49874.2020.9201785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

服务器在任务调度过程中产生的能耗是云计算系统动态能耗的重要组成部分。节能和提高能效是实现绿色云计算系统的重要基础。在绿色云计算下,本文旨在降低能耗,缩短任务执行时间。将遗传算法与蚁群算法相结合,提出了一种动态融合任务调度算法。从而降低云计算数据中心和计算中心的能耗。仿真结果表明,所提出的任务调度算法能够显著降低云计算系统任务的时间和总能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improvement of Task Scheduling Algorithms for Green Cloud Computing
The energy consumption generated by servers in task scheduling is an important part of the dynamic energy consumption of cloud computing systems. Saving energy and improving energy efficiency are important foundations for realizing green cloud computing systems. Under green cloud computing, this paper aims to reduce energy consumption and shorten task execution time. This paper combines genetic algorithm and ant colony algorithm to propose a dynamic fusion task-scheduling algorithm. Thereby reducing the energy consumption of cloud computing data centers and computing centers. The simulation results show that the proposed task scheduling algorithm can significantly reduce the time and total energy consumption of cloud computing system tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction of the new Operating System Kernel Internals for the New Metrics for the Performance Prediction on the Clouds Abnormal Event Detection in Video Based on Sparse Representation The Mechanism of Intelligent Technology Reforming Education Based on the Perspective of Embodied Cognitive Theory* Multi-integrated Reform for the Course of Data Structure Intelligent Distribution Platform of Network Shared Resources Based on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1