Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin
{"title":"基于点源照明光栅成像的二维反射式光学编码器","authors":"Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin","doi":"10.1117/12.2511441","DOIUrl":null,"url":null,"abstract":"A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-dimensional reflective optical encoder based on point source illuminated grating imaging\",\"authors\":\"Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin\",\"doi\":\"10.1117/12.2511441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2511441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-dimensional reflective optical encoder based on point source illuminated grating imaging
A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.