实用,实时集中控制基于cdn的实时视频传输

Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, S. Seshan, Hui Zhang
{"title":"实用,实时集中控制基于cdn的实时视频传输","authors":"Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, S. Seshan, Hui Zhang","doi":"10.1145/2785956.2787475","DOIUrl":null,"url":null,"abstract":"Live video delivery is expected to reach a peak of 50 Tbps this year. This surging popularity is fundamentally changing the Internet video delivery landscape. CDNs must meet users' demands for fast join times, high bitrates, and low buffering ratios, while minimizing their own cost of delivery and responding to issues in real-time. Wide-area latency, loss, and failures, as well as varied workloads (\"mega-events\" to long-tail), make meeting these demands challenging. An analysis of video sessions concluded that a centralized controller could improve user experience, but CDN systems have shied away from such designs due to the difficulty of quickly handling failures, a requirement of both operators and users. We introduce VDN, a practical approach to a video delivery network that uses a centralized algorithm for live video optimization. VDN provides CDN operators with real-time, fine-grained control. It does this in spite of challenges resulting from the wide-area (e.g., state inconsistency, partitions, failures) by using a hybrid centralized+distributed control plane, increasing average bitrate by 1.7x and decreasing cost by 2x in different scenarios.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Practical, Real-time Centralized Control for CDN-based Live Video Delivery\",\"authors\":\"Matthew K. Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, S. Seshan, Hui Zhang\",\"doi\":\"10.1145/2785956.2787475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Live video delivery is expected to reach a peak of 50 Tbps this year. This surging popularity is fundamentally changing the Internet video delivery landscape. CDNs must meet users' demands for fast join times, high bitrates, and low buffering ratios, while minimizing their own cost of delivery and responding to issues in real-time. Wide-area latency, loss, and failures, as well as varied workloads (\\\"mega-events\\\" to long-tail), make meeting these demands challenging. An analysis of video sessions concluded that a centralized controller could improve user experience, but CDN systems have shied away from such designs due to the difficulty of quickly handling failures, a requirement of both operators and users. We introduce VDN, a practical approach to a video delivery network that uses a centralized algorithm for live video optimization. VDN provides CDN operators with real-time, fine-grained control. It does this in spite of challenges resulting from the wide-area (e.g., state inconsistency, partitions, failures) by using a hybrid centralized+distributed control plane, increasing average bitrate by 1.7x and decreasing cost by 2x in different scenarios.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2787475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2787475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

直播视频传输预计今年将达到50tbps的峰值。这种激增的流行从根本上改变了互联网视频传输的格局。cdn必须满足用户对快速连接时间、高比特率和低缓冲比率的需求,同时最小化自己的交付成本和实时响应问题。广域延迟、丢失和故障以及各种工作负载(从“大型事件”到“长尾事件”)使满足这些需求变得具有挑战性。对视频会话的分析得出结论,集中式控制器可以改善用户体验,但CDN系统由于难以快速处理故障而回避了这种设计,这是运营商和用户的要求。我们介绍VDN,这是一种实用的视频传输网络方法,它使用集中算法进行实时视频优化。VDN为CDN运营商提供实时、细粒度的控制。尽管广域(例如,状态不一致、分区、故障)带来了挑战,但通过使用混合集中式+分布式控制平面,在不同的场景下,平均比特率提高了1.7倍,成本降低了2x,它还是做到了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical, Real-time Centralized Control for CDN-based Live Video Delivery
Live video delivery is expected to reach a peak of 50 Tbps this year. This surging popularity is fundamentally changing the Internet video delivery landscape. CDNs must meet users' demands for fast join times, high bitrates, and low buffering ratios, while minimizing their own cost of delivery and responding to issues in real-time. Wide-area latency, loss, and failures, as well as varied workloads ("mega-events" to long-tail), make meeting these demands challenging. An analysis of video sessions concluded that a centralized controller could improve user experience, but CDN systems have shied away from such designs due to the difficulty of quickly handling failures, a requirement of both operators and users. We introduce VDN, a practical approach to a video delivery network that uses a centralized algorithm for live video optimization. VDN provides CDN operators with real-time, fine-grained control. It does this in spite of challenges resulting from the wide-area (e.g., state inconsistency, partitions, failures) by using a hybrid centralized+distributed control plane, increasing average bitrate by 1.7x and decreasing cost by 2x in different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternative Trust Sources: Reducing DNSSEC Signature Verification Operations with TLS RPKI MIRO: Monitoring and Inspection of RPKI Objects Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale Extreme Data-rate Scheduling for the Data Center Multi-Context TLS (mcTLS): Enabling Secure In-Network Functionality in TLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1