{"title":"一类非线性互联系统的安全可重构性","authors":"Zixin An, Hao Yang, B. Jiang","doi":"10.1109/SAFEPROCESS45799.2019.9213390","DOIUrl":null,"url":null,"abstract":"In this paper, based on the small-gain theorem of large-scale interconnected systems, we study the convergence performance of nonlinear interconnected systems with cycles, and establish a safely reconfigurable condition for the control law of each subsystem, which is applied to design fault-tolerant control (FTC) schemes. Both individual and cooperative FTC methods are presented in this paper by redesigning the controller of each subsystem and adjusting the interconnected gain between subsystems to ensure that the trajectories of states do not exceed the given safety bound.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe Reconfigurability of a Class of Nonlinear Interconnected Systems\",\"authors\":\"Zixin An, Hao Yang, B. Jiang\",\"doi\":\"10.1109/SAFEPROCESS45799.2019.9213390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the small-gain theorem of large-scale interconnected systems, we study the convergence performance of nonlinear interconnected systems with cycles, and establish a safely reconfigurable condition for the control law of each subsystem, which is applied to design fault-tolerant control (FTC) schemes. Both individual and cooperative FTC methods are presented in this paper by redesigning the controller of each subsystem and adjusting the interconnected gain between subsystems to ensure that the trajectories of states do not exceed the given safety bound.\",\"PeriodicalId\":353946,\"journal\":{\"name\":\"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)\",\"volume\":\"311 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safe Reconfigurability of a Class of Nonlinear Interconnected Systems
In this paper, based on the small-gain theorem of large-scale interconnected systems, we study the convergence performance of nonlinear interconnected systems with cycles, and establish a safely reconfigurable condition for the control law of each subsystem, which is applied to design fault-tolerant control (FTC) schemes. Both individual and cooperative FTC methods are presented in this paper by redesigning the controller of each subsystem and adjusting the interconnected gain between subsystems to ensure that the trajectories of states do not exceed the given safety bound.