利用k-均值像素聚类改进遥感图像语义分割:一种基于k-均值聚类的语义分割后处理方法

Xiaohui Zeng, Isabelle Chen, Pai Liu
{"title":"利用k-均值像素聚类改进遥感图像语义分割:一种基于k-均值聚类的语义分割后处理方法","authors":"Xiaohui Zeng, Isabelle Chen, Pai Liu","doi":"10.1109/CSAIEE54046.2021.9543336","DOIUrl":null,"url":null,"abstract":"Semantic image segmentation has been used to detect objects and label pixels in images. It has been applied to high-resolution remote sensing images to detect different types of terrains and landforms. However, the accuracy of the existing methods is not always satisfactory. Here we propose a semantic segmentation post-processing method using K-mean clustering. Our method aggregates the predictions from network training algorithms such as Unet and HrNet [1], and then performs postprocessing using K-Mean clustering iteratively [2] [3]. The accuracy of our method improves as the number of iterations increases. Source code is at https://github.com/carlsummer/SSK.","PeriodicalId":376014,"journal":{"name":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improve Semantic Segmentation of Remote sensing Images with K-Mean Pixel Clustering: A semantic segmentation post-processing method based on k-means clustering\",\"authors\":\"Xiaohui Zeng, Isabelle Chen, Pai Liu\",\"doi\":\"10.1109/CSAIEE54046.2021.9543336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic image segmentation has been used to detect objects and label pixels in images. It has been applied to high-resolution remote sensing images to detect different types of terrains and landforms. However, the accuracy of the existing methods is not always satisfactory. Here we propose a semantic segmentation post-processing method using K-mean clustering. Our method aggregates the predictions from network training algorithms such as Unet and HrNet [1], and then performs postprocessing using K-Mean clustering iteratively [2] [3]. The accuracy of our method improves as the number of iterations increases. Source code is at https://github.com/carlsummer/SSK.\",\"PeriodicalId\":376014,\"journal\":{\"name\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAIEE54046.2021.9543336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAIEE54046.2021.9543336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语义图像分割已被用于检测物体和标记图像中的像素。它已被应用于高分辨率遥感图像,以检测不同类型的地形和地貌。然而,现有方法的准确性并不总是令人满意的。本文提出了一种基于k均值聚类的语义分割后处理方法。我们的方法将Unet和HrNet[1]等网络训练算法的预测结果聚合在一起,然后使用K-Mean聚类迭代进行后处理[2][3]。随着迭代次数的增加,我们的方法的准确性也在提高。源代码在https://github.com/carlsummer/SSK。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improve Semantic Segmentation of Remote sensing Images with K-Mean Pixel Clustering: A semantic segmentation post-processing method based on k-means clustering
Semantic image segmentation has been used to detect objects and label pixels in images. It has been applied to high-resolution remote sensing images to detect different types of terrains and landforms. However, the accuracy of the existing methods is not always satisfactory. Here we propose a semantic segmentation post-processing method using K-mean clustering. Our method aggregates the predictions from network training algorithms such as Unet and HrNet [1], and then performs postprocessing using K-Mean clustering iteratively [2] [3]. The accuracy of our method improves as the number of iterations increases. Source code is at https://github.com/carlsummer/SSK.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Res-Attention Net: An Image Dehazing Network Teacher-Student Network for Low-quality Remote Sensing Ship Detection Optimization of GNSS Signals Acquisition Algorithm Complexity Using Comb Decimation Filter Basic Ensemble Learning of Encoder Representations from Transformer for Disaster-mentioning Tweets Classification Measuring Hilbert-Schmidt Independence Criterion with Different Kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1