TRECVID:评估数字视频信息检索任务的有效性

A. Smeaton, P. Over, Wessel Kraaij
{"title":"TRECVID:评估数字视频信息检索任务的有效性","authors":"A. Smeaton, P. Over, Wessel Kraaij","doi":"10.1145/1027527.1027678","DOIUrl":null,"url":null,"abstract":"TRECVID is an annual exercise which encourages research in information retrieval from digital video by providing a large video test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of some semantic features, and the automatic segmentation of TV news broadcasts into non-overlapping news stories. TRECVID has a broad range of over 40 participating groups from across the world and as it is now (2004) in its 4th annual cycle it is opportune to stand back and look at the lessons we have learned from the cumulative activity. In this paper we shall present a brief and high-level overview of the TRECVID activity covering the data, the benchmarked tasks, the overall results obtained by groups to date and an overview of the approaches taken by selective groups in some tasks. While progress from one year to the next cannot be measured directly because of the changing nature of the video data we have been using, we shall present a summary of the lessons we have learned from TRECVID and include some pointers on what we feel are the most important of these lessons.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"TRECVID: evaluating the effectiveness of information retrieval tasks on digital video\",\"authors\":\"A. Smeaton, P. Over, Wessel Kraaij\",\"doi\":\"10.1145/1027527.1027678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TRECVID is an annual exercise which encourages research in information retrieval from digital video by providing a large video test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of some semantic features, and the automatic segmentation of TV news broadcasts into non-overlapping news stories. TRECVID has a broad range of over 40 participating groups from across the world and as it is now (2004) in its 4th annual cycle it is opportune to stand back and look at the lessons we have learned from the cumulative activity. In this paper we shall present a brief and high-level overview of the TRECVID activity covering the data, the benchmarked tasks, the overall results obtained by groups to date and an overview of the approaches taken by selective groups in some tasks. While progress from one year to the next cannot be measured directly because of the changing nature of the video data we have been using, we shall present a summary of the lessons we have learned from TRECVID and include some pointers on what we feel are the most important of these lessons.\",\"PeriodicalId\":292207,\"journal\":{\"name\":\"MULTIMEDIA '04\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1027527.1027678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

摘要

TRECVID是一项年度活动,通过提供大量视频测试集、统一评分程序和对比较结果感兴趣的组织论坛,鼓励从数字视频中检索信息的研究。TRECVID的基准测试涵盖了终端用户的交互式和手动搜索,以及镜头边界检测、一些语义特征提取、电视新闻广播自动分割成不重叠新闻故事等一些支持技术的基准测试。TRECVID有来自世界各地的40多个参与团体,现在(2004年)是它的第四个年度周期,这是一个回顾我们从累积活动中吸取教训的机会。在本文中,我们将简要概述TRECVID活动,包括数据、基准任务、迄今为止各小组获得的总体结果,以及在某些任务中选定小组所采取的方法。由于我们一直在使用的视频数据性质不断变化,因此无法直接衡量一年到下一年的进展,但我们将总结从TRECVID中学到的经验教训,并就我们认为最重要的经验教训提出一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRECVID: evaluating the effectiveness of information retrieval tasks on digital video
TRECVID is an annual exercise which encourages research in information retrieval from digital video by providing a large video test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of some semantic features, and the automatic segmentation of TV news broadcasts into non-overlapping news stories. TRECVID has a broad range of over 40 participating groups from across the world and as it is now (2004) in its 4th annual cycle it is opportune to stand back and look at the lessons we have learned from the cumulative activity. In this paper we shall present a brief and high-level overview of the TRECVID activity covering the data, the benchmarked tasks, the overall results obtained by groups to date and an overview of the approaches taken by selective groups in some tasks. While progress from one year to the next cannot be measured directly because of the changing nature of the video data we have been using, we shall present a summary of the lessons we have learned from TRECVID and include some pointers on what we feel are the most important of these lessons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1