非线性动态系统参数估计的粒子滤波灰狼优化

Cuilian Zhang, Xu Yang, Lilingbo, Derek F. Wong
{"title":"非线性动态系统参数估计的粒子滤波灰狼优化","authors":"Cuilian Zhang, Xu Yang, Lilingbo, Derek F. Wong","doi":"10.1109/ICWAPR.2018.8521245","DOIUrl":null,"url":null,"abstract":"Particle filter samplers, Markov chain Monte Carlo (MCM-C)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF -GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF -GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Particle Filter Grey Wolf Optimization for Parameter Estimation of Nonlinear Dynamic System\",\"authors\":\"Cuilian Zhang, Xu Yang, Lilingbo, Derek F. Wong\",\"doi\":\"10.1109/ICWAPR.2018.8521245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filter samplers, Markov chain Monte Carlo (MCM-C)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF -GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF -GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.\",\"PeriodicalId\":385478,\"journal\":{\"name\":\"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2018.8521245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粒子滤波采样器、马尔可夫链蒙特卡罗(MCM-C)采样器和群体智能可以用于非线性动态系统的后验概率分布参数估计。然而采样器的全局探测能力和效率依赖于粒子滤波采样器的移动步长。本文提出了一种混合采样器算法:粒子滤波灰狼优化采样器(PF -GWO)。PF-GWO采样器将灰狼优化与Metropolis比结合到粒子滤波框架中,适用于估计非线性动态模型的未知静态参数。基于贝叶斯框架的Lorenz模型参数估计表明,PF -GWO采样器优于其他大范围先验分布的组合粒子滤波采样器算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Filter Grey Wolf Optimization for Parameter Estimation of Nonlinear Dynamic System
Particle filter samplers, Markov chain Monte Carlo (MCM-C)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF -GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF -GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of a Convolutional Autoencoder to Half Space Radar Hrrp Recognition Hyperspectral Image Classification Based on Different Affinity Metrics Research of Localization Algorithm of Internet of Vehicles Based on Intelligent Transportation Proceedings of International Conference on Wavelet Analysis and Pattern Recognition Phase Averaging on Square Cylinder Wake Based on Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1