基于空间噪声估计的小波图像去噪

Souad Benabdelkader, Ouarda Soltani
{"title":"基于空间噪声估计的小波图像去噪","authors":"Souad Benabdelkader, Ouarda Soltani","doi":"10.1109/SPIS.2015.7422317","DOIUrl":null,"url":null,"abstract":"The classical wavelet denoising scheme estimates the noise level in the wavelet domain using only the upper detail subband. In this paper, we present a hybrid method for wavelet image denoising in which the standard deviation of the noise is estimated on the entire image pixels in the spatial domain within an adaptive edge preservation scheme. Thereafter, that estimation is used to calculate the threshold for wavelet coefficients shrinkage.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wavelet image denoising based spatial noise estimation\",\"authors\":\"Souad Benabdelkader, Ouarda Soltani\",\"doi\":\"10.1109/SPIS.2015.7422317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical wavelet denoising scheme estimates the noise level in the wavelet domain using only the upper detail subband. In this paper, we present a hybrid method for wavelet image denoising in which the standard deviation of the noise is estimated on the entire image pixels in the spatial domain within an adaptive edge preservation scheme. Thereafter, that estimation is used to calculate the threshold for wavelet coefficients shrinkage.\",\"PeriodicalId\":424434,\"journal\":{\"name\":\"2015 Signal Processing and Intelligent Systems Conference (SPIS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Signal Processing and Intelligent Systems Conference (SPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIS.2015.7422317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

经典的小波去噪方案仅利用上细节子带估计小波域内的噪声电平。在本文中,我们提出了一种混合的小波图像去噪方法,该方法在自适应边缘保留方案中估计噪声在整个图像像素的空间域上的标准差。然后,使用该估计计算小波系数收缩的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet image denoising based spatial noise estimation
The classical wavelet denoising scheme estimates the noise level in the wavelet domain using only the upper detail subband. In this paper, we present a hybrid method for wavelet image denoising in which the standard deviation of the noise is estimated on the entire image pixels in the spatial domain within an adaptive edge preservation scheme. Thereafter, that estimation is used to calculate the threshold for wavelet coefficients shrinkage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-friendly visual secret sharing based on random grids An adaptive single image method for super resolution An improved DV-Hop localization algorithm in wireless sensor networks Optimization of the low-cost INS/GPS navigation system using ANFIS for high speed vehicle application A novel compressed sensing DOA estimation using difference set codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1