Aprilia Puspita C., A. Martha, Priyobudi, S. Rohadi, N. Heryandoko, S. Ahadi
{"title":"利用DinSAR方法识别2022年2月25日Pasaman地震的变形","authors":"Aprilia Puspita C., A. Martha, Priyobudi, S. Rohadi, N. Heryandoko, S. Ahadi","doi":"10.1109/AGERS56232.2022.10093550","DOIUrl":null,"url":null,"abstract":"The Pasaman earthquake on February 25, 2022, had a magnitude of 6.1 with a depth of 10 km and an epicenter at 0.15 N - 99.98 BT. This earthquake was preceded by a lower magnitude earthquake with a magnitude of 5.2, with an interval of about 4 minutes before the main earthquake. Based on information updates from BMKG until March 7, 2022, there were 279 aftershocks and 10 felt times. Based on information from the Pasaman regency government, the casualties affected as many as 24 people died, 7186 people were displaced and more than 6625 houses were damaged spread across 5 districts, including West Pasaman, Pasaman, Lima Puluh Kota, Agam, and Padang Pariaman districts. This study aims to provide information on the location of deformations caused by this earthquake. Because the impact of the earthquake is quite extensive and destructive, it is very necessary to inform the information that occurs for future mitigation efforts. This research uses the DinSAR method by utilizing data from sentinel 1 type SLC (Single Look Complex) imagery before (11 and 23 February 2022) and after (7 March 2022) the earthquake occurred. In addition, we processed satellite Gravity data from GGMPlus to identify weak structures associated with low anomalies for comparison with the results of the DinSAR Method. The results of the satellite imagery process show that the areas identified as deformation at the time of the earthquake are in zones with low (negative) anomaly residual gravity values.","PeriodicalId":370213,"journal":{"name":"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)","volume":"7 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation Identification Due to the Pasaman Earthquake On February 25 2022, Using The DinSAR Method\",\"authors\":\"Aprilia Puspita C., A. Martha, Priyobudi, S. Rohadi, N. Heryandoko, S. Ahadi\",\"doi\":\"10.1109/AGERS56232.2022.10093550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pasaman earthquake on February 25, 2022, had a magnitude of 6.1 with a depth of 10 km and an epicenter at 0.15 N - 99.98 BT. This earthquake was preceded by a lower magnitude earthquake with a magnitude of 5.2, with an interval of about 4 minutes before the main earthquake. Based on information updates from BMKG until March 7, 2022, there were 279 aftershocks and 10 felt times. Based on information from the Pasaman regency government, the casualties affected as many as 24 people died, 7186 people were displaced and more than 6625 houses were damaged spread across 5 districts, including West Pasaman, Pasaman, Lima Puluh Kota, Agam, and Padang Pariaman districts. This study aims to provide information on the location of deformations caused by this earthquake. Because the impact of the earthquake is quite extensive and destructive, it is very necessary to inform the information that occurs for future mitigation efforts. This research uses the DinSAR method by utilizing data from sentinel 1 type SLC (Single Look Complex) imagery before (11 and 23 February 2022) and after (7 March 2022) the earthquake occurred. In addition, we processed satellite Gravity data from GGMPlus to identify weak structures associated with low anomalies for comparison with the results of the DinSAR Method. The results of the satellite imagery process show that the areas identified as deformation at the time of the earthquake are in zones with low (negative) anomaly residual gravity values.\",\"PeriodicalId\":370213,\"journal\":{\"name\":\"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)\",\"volume\":\"7 Suppl 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGERS56232.2022.10093550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGERS56232.2022.10093550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
2022年2月25日发生的巴萨曼地震,震级为6.1级,震源深度10公里,震中为0.15 N - 99.98 BT,地震前有一次较低震级5.2级地震,地震发生在主震发生前4分钟左右。根据BMKG截至2022年3月7日的最新信息,共发生279次余震,10次有震感。据帕沙曼县政府透露,在西帕沙曼、帕沙曼、利马普卢哥打、阿甘、巴东帕沙曼等5个地区,共有24人死亡,7186人流离失所,6625所房屋受损。这项研究的目的是提供这次地震造成的变形的位置信息。由于地震的影响相当广泛和具有破坏性,因此非常有必要将发生的信息告知未来的减灾工作。本研究使用DinSAR方法,利用sentinel 1型SLC (Single Look Complex)图像在地震发生前(2022年2月11日和23日)和之后(2022年3月7日)的数据。此外,我们还处理了来自GGMPlus的卫星重力数据,以识别与低异常相关的弱结构,并与DinSAR方法的结果进行比较。卫星影像处理结果表明,地震时被识别为形变的区域位于低(负)残余重力异常区。
Deformation Identification Due to the Pasaman Earthquake On February 25 2022, Using The DinSAR Method
The Pasaman earthquake on February 25, 2022, had a magnitude of 6.1 with a depth of 10 km and an epicenter at 0.15 N - 99.98 BT. This earthquake was preceded by a lower magnitude earthquake with a magnitude of 5.2, with an interval of about 4 minutes before the main earthquake. Based on information updates from BMKG until March 7, 2022, there were 279 aftershocks and 10 felt times. Based on information from the Pasaman regency government, the casualties affected as many as 24 people died, 7186 people were displaced and more than 6625 houses were damaged spread across 5 districts, including West Pasaman, Pasaman, Lima Puluh Kota, Agam, and Padang Pariaman districts. This study aims to provide information on the location of deformations caused by this earthquake. Because the impact of the earthquake is quite extensive and destructive, it is very necessary to inform the information that occurs for future mitigation efforts. This research uses the DinSAR method by utilizing data from sentinel 1 type SLC (Single Look Complex) imagery before (11 and 23 February 2022) and after (7 March 2022) the earthquake occurred. In addition, we processed satellite Gravity data from GGMPlus to identify weak structures associated with low anomalies for comparison with the results of the DinSAR Method. The results of the satellite imagery process show that the areas identified as deformation at the time of the earthquake are in zones with low (negative) anomaly residual gravity values.