基于边缘数据处理和LSTM递归神经网络的工具剩余使用寿命预测

Qingqing Huang, Zhen Kang, Yan Zhang, Dong Yan
{"title":"基于边缘数据处理和LSTM递归神经网络的工具剩余使用寿命预测","authors":"Qingqing Huang, Zhen Kang, Yan Zhang, Dong Yan","doi":"10.1109/ICPHM49022.2020.9187037","DOIUrl":null,"url":null,"abstract":"The real-time prediction of tool remaining useful life is a challenging problem. This paper proposes a Long Short-Term Memory (LSTM) recurrent neural network model, which is combined with an edge data processing method to predict the tool remaining useful life in real-time. Data cleaning and feature extraction are carried out at the edge node to reduce the transmission time, save the transmission cost and improve the real-time performance of life prediction. After further feature selection in the cloud, a simple three-layer LSTM recurrent neural network model is established. Compared with the tree model and the ordinary neural network model, the experimental results show that the LSTM model has better performance of the tool remaining useful life prediction.","PeriodicalId":148899,"journal":{"name":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tool Remaining Useful Life Prediction based on Edge Data Processing and LSTM Recurrent Neural Network\",\"authors\":\"Qingqing Huang, Zhen Kang, Yan Zhang, Dong Yan\",\"doi\":\"10.1109/ICPHM49022.2020.9187037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The real-time prediction of tool remaining useful life is a challenging problem. This paper proposes a Long Short-Term Memory (LSTM) recurrent neural network model, which is combined with an edge data processing method to predict the tool remaining useful life in real-time. Data cleaning and feature extraction are carried out at the edge node to reduce the transmission time, save the transmission cost and improve the real-time performance of life prediction. After further feature selection in the cloud, a simple three-layer LSTM recurrent neural network model is established. Compared with the tree model and the ordinary neural network model, the experimental results show that the LSTM model has better performance of the tool remaining useful life prediction.\",\"PeriodicalId\":148899,\"journal\":{\"name\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM49022.2020.9187037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM49022.2020.9187037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

刀具剩余使用寿命的实时预测是一个具有挑战性的问题。提出了一种长短期记忆递归神经网络模型,结合边缘数据处理方法实时预测刀具剩余使用寿命。在边缘节点进行数据清洗和特征提取,减少传输时间,节约传输成本,提高寿命预测的实时性。在云中进一步进行特征选择后,建立简单的三层LSTM递归神经网络模型。实验结果表明,与树模型和普通神经网络模型相比,LSTM模型具有更好的工具剩余使用寿命预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tool Remaining Useful Life Prediction based on Edge Data Processing and LSTM Recurrent Neural Network
The real-time prediction of tool remaining useful life is a challenging problem. This paper proposes a Long Short-Term Memory (LSTM) recurrent neural network model, which is combined with an edge data processing method to predict the tool remaining useful life in real-time. Data cleaning and feature extraction are carried out at the edge node to reduce the transmission time, save the transmission cost and improve the real-time performance of life prediction. After further feature selection in the cloud, a simple three-layer LSTM recurrent neural network model is established. Compared with the tree model and the ordinary neural network model, the experimental results show that the LSTM model has better performance of the tool remaining useful life prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime Estimation Bayesian Neural Network Based Method of Remaining Useful Life Prediction and Uncertainty Quantification for Aircraft Engine Semi-Supervised Learning Approach for Optimizing Condition-based-Maintenance (CBM) Decisions Designing a Reliability Quick Switching Sampling Plan based on the Lifetime Performance Index Automated detection of textured-surface defects using UNet-based semantic segmentation network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1