Y. S. Dhillon, A. U. Diril, A. Chatterjee, A. Singh
{"title":"低功耗双V/sub /伪双V/sub /多米诺电路","authors":"Y. S. Dhillon, A. U. Diril, A. Chatterjee, A. Singh","doi":"10.1145/1016568.1016640","DOIUrl":null,"url":null,"abstract":"Domino logic is a commonly used alternative to CMOS logic for designing circuits with high speed and/or low area requirements. Although it provides higher speed and lower area, domino logic has relatively higher dynamic power consumption than CMOS logic due to a precharge/evaluate based operation. We propose a novel low-power domino gate design and also a methodology to use these low-power but slower gates with regular domino logic gates in combinational circuits to achieve low-power operation without changing the circuit delay. We apply our method on ISCAS'85 benchmark circuits and find that replacing the off-critical path normal domino gates with the proposed low-power gates reduces power consumption of the circuits by 20.6% on the average without affecting the circuit timing.","PeriodicalId":275811,"journal":{"name":"Proceedings. SBCCI 2004. 17th Symposium on Integrated Circuits and Systems Design (IEEE Cat. No.04TH8784)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-power dual V/sub th/ pseudo dual V/sub dd/ domino circuits\",\"authors\":\"Y. S. Dhillon, A. U. Diril, A. Chatterjee, A. Singh\",\"doi\":\"10.1145/1016568.1016640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domino logic is a commonly used alternative to CMOS logic for designing circuits with high speed and/or low area requirements. Although it provides higher speed and lower area, domino logic has relatively higher dynamic power consumption than CMOS logic due to a precharge/evaluate based operation. We propose a novel low-power domino gate design and also a methodology to use these low-power but slower gates with regular domino logic gates in combinational circuits to achieve low-power operation without changing the circuit delay. We apply our method on ISCAS'85 benchmark circuits and find that replacing the off-critical path normal domino gates with the proposed low-power gates reduces power consumption of the circuits by 20.6% on the average without affecting the circuit timing.\",\"PeriodicalId\":275811,\"journal\":{\"name\":\"Proceedings. SBCCI 2004. 17th Symposium on Integrated Circuits and Systems Design (IEEE Cat. No.04TH8784)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. SBCCI 2004. 17th Symposium on Integrated Circuits and Systems Design (IEEE Cat. No.04TH8784)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1016568.1016640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. SBCCI 2004. 17th Symposium on Integrated Circuits and Systems Design (IEEE Cat. No.04TH8784)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1016568.1016640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Domino logic is a commonly used alternative to CMOS logic for designing circuits with high speed and/or low area requirements. Although it provides higher speed and lower area, domino logic has relatively higher dynamic power consumption than CMOS logic due to a precharge/evaluate based operation. We propose a novel low-power domino gate design and also a methodology to use these low-power but slower gates with regular domino logic gates in combinational circuits to achieve low-power operation without changing the circuit delay. We apply our method on ISCAS'85 benchmark circuits and find that replacing the off-critical path normal domino gates with the proposed low-power gates reduces power consumption of the circuits by 20.6% on the average without affecting the circuit timing.