基于边缘计算的工业网络资源分配与负载均衡

Ximin Sun, Jiangkai Jia, Zan Liu, Yong Li, Bo Sun, Dan Liu
{"title":"基于边缘计算的工业网络资源分配与负载均衡","authors":"Ximin Sun, Jiangkai Jia, Zan Liu, Yong Li, Bo Sun, Dan Liu","doi":"10.1109/SmartIoT55134.2022.00048","DOIUrl":null,"url":null,"abstract":"Current edge cloud resource management approaches generally target clusters with specific purposes and can only be optimized for one load variation at a time. However, large general industrial IoT cloud platforms have multiple system architectures, which provide a wide range of resources and service characteristics. Meanwhile, there is a huge difference between the application type and the resource demand of the application, which leads to drastic energy consumption fluctuations and resource heterogeneity. The existing edge computing architecture and scheduling algorithm do not consider the impact of dynamic factors on the computational load. In this paper, a scheduling mechanism based on game theory and queuing networks is proposed for resource allocation and load balancing in IIoT.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Allocation and Load Balancing Based on Edge Computing in Industrial Networks\",\"authors\":\"Ximin Sun, Jiangkai Jia, Zan Liu, Yong Li, Bo Sun, Dan Liu\",\"doi\":\"10.1109/SmartIoT55134.2022.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current edge cloud resource management approaches generally target clusters with specific purposes and can only be optimized for one load variation at a time. However, large general industrial IoT cloud platforms have multiple system architectures, which provide a wide range of resources and service characteristics. Meanwhile, there is a huge difference between the application type and the resource demand of the application, which leads to drastic energy consumption fluctuations and resource heterogeneity. The existing edge computing architecture and scheduling algorithm do not consider the impact of dynamic factors on the computational load. In this paper, a scheduling mechanism based on game theory and queuing networks is proposed for resource allocation and load balancing in IIoT.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前的边缘云资源管理方法通常针对具有特定目的的集群,并且一次只能针对一个负载变化进行优化。然而,大型通用工业物联网云平台具有多种系统架构,提供广泛的资源和服务特性。同时,应用类型与应用资源需求之间存在巨大差异,导致能源消耗波动剧烈,资源异质性较大。现有的边缘计算架构和调度算法没有考虑动态因素对计算负荷的影响。本文提出了一种基于博弈论和排队网络的工业物联网资源分配和负载均衡调度机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource Allocation and Load Balancing Based on Edge Computing in Industrial Networks
Current edge cloud resource management approaches generally target clusters with specific purposes and can only be optimized for one load variation at a time. However, large general industrial IoT cloud platforms have multiple system architectures, which provide a wide range of resources and service characteristics. Meanwhile, there is a huge difference between the application type and the resource demand of the application, which leads to drastic energy consumption fluctuations and resource heterogeneity. The existing edge computing architecture and scheduling algorithm do not consider the impact of dynamic factors on the computational load. In this paper, a scheduling mechanism based on game theory and queuing networks is proposed for resource allocation and load balancing in IIoT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SmartCare: Detecting Heart Failure and Diabetes Using Smartwatch A Subspace Fusion of Hyper-parameter Optimization Method Based on Mean Regression A hybrid SOM and HMM classifier in a Fog Computing gateway for Ambient Assisted Living Environment The transitional phase of Boost.Asio and POCO C++ networking libraries towards IPv6 and IoT networking security Automotive Components Localization and De-globalization Purchasing Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1