基于卷积神经网络的视觉跟踪研究进展

Jia Zhang, Lei Yang, Xiaoyu Wu
{"title":"基于卷积神经网络的视觉跟踪研究进展","authors":"Jia Zhang, Lei Yang, Xiaoyu Wu","doi":"10.1109/COMPCOMM.2016.7924746","DOIUrl":null,"url":null,"abstract":"The paper summarized 13 classic methods of visual tracking and 9 methods combined with convolutional neural networks including some latest trackers and compared all these trackers in the same benchmark. After analyzing the results, we had some new idea for existing trackers.","PeriodicalId":210833,"journal":{"name":"2016 2nd IEEE International Conference on Computer and Communications (ICCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A survey on visual tracking via convolutional neural networks\",\"authors\":\"Jia Zhang, Lei Yang, Xiaoyu Wu\",\"doi\":\"10.1109/COMPCOMM.2016.7924746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper summarized 13 classic methods of visual tracking and 9 methods combined with convolutional neural networks including some latest trackers and compared all these trackers in the same benchmark. After analyzing the results, we had some new idea for existing trackers.\",\"PeriodicalId\":210833,\"journal\":{\"name\":\"2016 2nd IEEE International Conference on Computer and Communications (ICCC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd IEEE International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPCOMM.2016.7924746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd IEEE International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPCOMM.2016.7924746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文总结了13种经典的视觉跟踪方法和9种与卷积神经网络结合的方法,其中包括一些最新的跟踪器,并在同一基准下对所有这些跟踪器进行了比较。在分析结果后,我们对现有的跟踪器有了一些新的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey on visual tracking via convolutional neural networks
The paper summarized 13 classic methods of visual tracking and 9 methods combined with convolutional neural networks including some latest trackers and compared all these trackers in the same benchmark. After analyzing the results, we had some new idea for existing trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure routing in IoT with multi-objective simulated annealing Modeling of TCM packing robot and its kinematics simulation and optimization Iterative decision-directed channel estimation for MIMO-OFDM system A systemic performance evaluation method for Residue Number System A dynamic hierarchical quotient topology model based optimal path finding algorithm in complex networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1