半导体等离子蚀刻机预见性维护的计划维护计划更新方法

Shota Umeda, K. Tamaki, M. Sumiya, Yoshito Kamaji
{"title":"半导体等离子蚀刻机预见性维护的计划维护计划更新方法","authors":"Shota Umeda, K. Tamaki, M. Sumiya, Yoshito Kamaji","doi":"10.1109/ISSM51728.2020.9377534","DOIUrl":null,"url":null,"abstract":"In a semiconductor plasma etcher, it is becoming increasingly necessary to improve productivity. Thus, to reduce unplanned maintenance, predictive maintenance (PdM) is typically conducted. In PdM, the planned maintenance schedule is updated on the basis of the predicted failure timing. However, in practice, the predicted failure timing has a probabilistic variability. Therefore, we propose a maintenance schedule update method on the basis of the expected maintenance cost calculated from the probabilistic variability of the failure timing. We applied our method to a dataset that model failure cases of etchers and found that our method was effective in terms of maintenance costs.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Planned Maintenance Schedule Update Method for Predictive Maintenance of Semiconductor Plasma Etcher\",\"authors\":\"Shota Umeda, K. Tamaki, M. Sumiya, Yoshito Kamaji\",\"doi\":\"10.1109/ISSM51728.2020.9377534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a semiconductor plasma etcher, it is becoming increasingly necessary to improve productivity. Thus, to reduce unplanned maintenance, predictive maintenance (PdM) is typically conducted. In PdM, the planned maintenance schedule is updated on the basis of the predicted failure timing. However, in practice, the predicted failure timing has a probabilistic variability. Therefore, we propose a maintenance schedule update method on the basis of the expected maintenance cost calculated from the probabilistic variability of the failure timing. We applied our method to a dataset that model failure cases of etchers and found that our method was effective in terms of maintenance costs.\",\"PeriodicalId\":270309,\"journal\":{\"name\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM51728.2020.9377534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在半导体等离子蚀刻机中,提高生产效率变得越来越必要。因此,为了减少计划外维护,通常进行预测性维护(PdM)。在PdM中,计划的维护计划是根据预测的故障时间更新的。然而,在实际应用中,预测的故障时间具有概率可变性。因此,我们提出了一种基于故障时间概率变异性计算的期望维修成本的维修计划更新方法。我们将我们的方法应用于蚀刻机故障案例模型的数据集,并发现我们的方法在维护成本方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Planned Maintenance Schedule Update Method for Predictive Maintenance of Semiconductor Plasma Etcher
In a semiconductor plasma etcher, it is becoming increasingly necessary to improve productivity. Thus, to reduce unplanned maintenance, predictive maintenance (PdM) is typically conducted. In PdM, the planned maintenance schedule is updated on the basis of the predicted failure timing. However, in practice, the predicted failure timing has a probabilistic variability. Therefore, we propose a maintenance schedule update method on the basis of the expected maintenance cost calculated from the probabilistic variability of the failure timing. We applied our method to a dataset that model failure cases of etchers and found that our method was effective in terms of maintenance costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process Optimization of Trench Field Plate Power MOSFETs with Sequential Phosphorus-Doped Silicon Predicting and considering properties of general polymers using incomplete dataset Digital Transformation's Impact on Smart Manufacturing Etching characteristics of PECVD-prepared SiN films with CF4/D2 and CF4/H2 plasmas at different temperatures Using Quartz Crystal Microbalance to Provide Real-Time Process Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1