基于贝叶斯框架的电力系统可靠性不确定性量化

Meng Xu, C. Dent, Amy L. Wilson
{"title":"基于贝叶斯框架的电力系统可靠性不确定性量化","authors":"Meng Xu, C. Dent, Amy L. Wilson","doi":"10.1109/PMAPS.2016.7764187","DOIUrl":null,"url":null,"abstract":"Long-term generation investment (LTGI) models have been widely used as a decision-making tool of design of energy policy. Adequate LTGI models with detailed modelling of operations are often computationally intensive. Uncertainty involved in these models poses a great challenge to the uncertainty quantification in power system reliability. This paper presents a Bayesian framework for addressing this challenge systematically. The use of Bayesian techniques enables an efficient model calibration and quantitative study on the robustness of different market designs. In the case study on the future UK power system, the robustness index estimated by the calibrated model is obtained through uncertainty analysis of loss-of-load expectation.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"383 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification in power system reliability using a Bayesian framework\",\"authors\":\"Meng Xu, C. Dent, Amy L. Wilson\",\"doi\":\"10.1109/PMAPS.2016.7764187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term generation investment (LTGI) models have been widely used as a decision-making tool of design of energy policy. Adequate LTGI models with detailed modelling of operations are often computationally intensive. Uncertainty involved in these models poses a great challenge to the uncertainty quantification in power system reliability. This paper presents a Bayesian framework for addressing this challenge systematically. The use of Bayesian techniques enables an efficient model calibration and quantitative study on the robustness of different market designs. In the case study on the future UK power system, the robustness index estimated by the calibrated model is obtained through uncertainty analysis of loss-of-load expectation.\",\"PeriodicalId\":265474,\"journal\":{\"name\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":\"383 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS.2016.7764187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期发电投资(LTGI)模型作为能源政策设计的决策工具已得到广泛应用。具有详细操作建模的适当的LTGI模型通常是计算密集型的。这些模型中的不确定性对电力系统可靠性的不确定性量化提出了很大的挑战。本文提出了一个贝叶斯框架来系统地解决这一挑战。贝叶斯技术的使用使得对不同市场设计的稳健性进行有效的模型校准和定量研究成为可能。以未来英国电力系统为例,通过对失载期望的不确定性分析,得到校正后模型估计的鲁棒性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty quantification in power system reliability using a Bayesian framework
Long-term generation investment (LTGI) models have been widely used as a decision-making tool of design of energy policy. Adequate LTGI models with detailed modelling of operations are often computationally intensive. Uncertainty involved in these models poses a great challenge to the uncertainty quantification in power system reliability. This paper presents a Bayesian framework for addressing this challenge systematically. The use of Bayesian techniques enables an efficient model calibration and quantitative study on the robustness of different market designs. In the case study on the future UK power system, the robustness index estimated by the calibrated model is obtained through uncertainty analysis of loss-of-load expectation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1