面向阿拉伯语情感分析的预训练词嵌入比较研究

Mohamed Zouidine, Mohammed Khalil
{"title":"面向阿拉伯语情感分析的预训练词嵌入比较研究","authors":"Mohamed Zouidine, Mohammed Khalil","doi":"10.1109/COMPSAC54236.2022.00196","DOIUrl":null,"url":null,"abstract":"In this paper, we conduct a series of experiments to systematically study both context-independent and context-dependent word embeddings for the purpose of Arabic sentiment analysis. We use pretrained word embeddings as fixed features extractors to provide input features for a CNN model. Experimental results with two different Arabic sentiment analysis datasets indicate that the pre-trained contextualized AraBERT model is the most suitable for such tasks. AraBERT reaches an accuracy score of 91.4% and 95.49% on the large Arabic book reviews dataset (LABR) and the hotel Arabic-reviews dataset (HARD), respectively.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Pre-trained Word Embeddings for Arabic Sentiment Analysis\",\"authors\":\"Mohamed Zouidine, Mohammed Khalil\",\"doi\":\"10.1109/COMPSAC54236.2022.00196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we conduct a series of experiments to systematically study both context-independent and context-dependent word embeddings for the purpose of Arabic sentiment analysis. We use pretrained word embeddings as fixed features extractors to provide input features for a CNN model. Experimental results with two different Arabic sentiment analysis datasets indicate that the pre-trained contextualized AraBERT model is the most suitable for such tasks. AraBERT reaches an accuracy score of 91.4% and 95.49% on the large Arabic book reviews dataset (LABR) and the hotel Arabic-reviews dataset (HARD), respectively.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们进行了一系列实验来系统地研究上下文无关和上下文相关的词嵌入,以用于阿拉伯语情感分析。我们使用预训练的词嵌入作为固定特征提取器,为CNN模型提供输入特征。两种不同阿拉伯语情感分析数据集的实验结果表明,预训练的情境化AraBERT模型最适合此类任务。AraBERT在大型阿拉伯语书评数据集(LABR)和酒店阿拉伯语评论数据集(HARD)上分别达到了91.4%和95.49%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study of Pre-trained Word Embeddings for Arabic Sentiment Analysis
In this paper, we conduct a series of experiments to systematically study both context-independent and context-dependent word embeddings for the purpose of Arabic sentiment analysis. We use pretrained word embeddings as fixed features extractors to provide input features for a CNN model. Experimental results with two different Arabic sentiment analysis datasets indicate that the pre-trained contextualized AraBERT model is the most suitable for such tasks. AraBERT reaches an accuracy score of 91.4% and 95.49% on the large Arabic book reviews dataset (LABR) and the hotel Arabic-reviews dataset (HARD), respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Category-Aware App Permission Recommendation based on Sparse Linear Model Early Detection of At-Risk Students in a Calculus Course Apple-YOLO: A Novel Mobile Terminal Detector Based on YOLOv5 for Early Apple Leaf Diseases A Safe Route Recommendation Method Based on Driver Characteristics from Telematics Data GSDNet: An Anti-interference Cochlea Segmentation Model Based on GAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1